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D
A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL AND

CONICAL SHELLS SUB_ECT_ TO VARIOUS TYPES AND COMBINATIONS OF LOADS

SUMMARY

The investigation consisted of studies in the following three areas:

analytical studies of the stress distribution in conical shells of both lin-

early varying thickness and constant thickness subjected to various types

of loads; a study of the feasibility of using small plastic cylinders in

investigations of the stability of circular cylindrical shells subjected

simultaneously to axial compressive loads and internal pressure; and, an

experimental and analytical study of the stress distribution in integrally

stiffened panels subjected to axial loads.

INTRODUCTION

Theoretical and experimental investigations of cylindrical and conical

shells began at the University of Alabama under the terms of Contract Number

DA-Ol-OOg-ORD-334 with the Redstone Arsenal and Contract Number DA-Ol-OOg-

0RD-866 with the U.S. Army Ordnance District, Birmingham, Alabama. Follow-

ing these two studies, discussions were held with personnel of the Propul-

sion and Vehicle Engineering Division at the George C. Marshall Space Flight

Center of the National Aeronautics and Space Administration to formulate a

long range research program that would provide analytical procedures, design

data and digital computer programs for the analysis and design of cylindri-

cal and conical shells.

The first phase of the planned program was conducted under the terms

of NASA Contract NAS8-5012 and the results were published by the University

of Alabama Bureau of Engineering Research as a Summary Report in four sec-

tions as follows: Section 1 - "General Instability of an Orthotropic Cir-

cular Cylindrical Shell Subjected to a Pressure Combined with an Axial Load

Considering Both Clamped and Simply Supported Edge Conditions" by Carl C.

Steyer and Thomas A. Carlton, Jr.; Section 2 - "Stress in a Segment of a

Conical Shell Subjected to Lateral Normal Load" by Chin Hao Chang; Section

3 - "General Instability of an Orthotropic Circular Conical Shell Subjected

to Hydrostatic Pressure and a Compressive Axial Force" by Carl C. Steyer



and Shih-Cheng Zien; and Section 4 - 'Matrix Shear Lag Analysis Utiliz_

ing a High-Speed Digital Computer" by William K. Rey.

The second phase of the research program was conducted under the

terms of NASAContract NAS8-5168with the results presented in five tech-

nical reports as follows: Technical Report A - "Fortran II Computer Pro-

gram for the Evaluation of a Donnell Type_of Differe_ti_l_Equa_ion _or a

Simply-Supported Cylindrical Shell" by ThamasD. Easter; Technical Report

B - "Fortran II ComputerProgram for the Evaluation of a Donnell Type of

Differential Equation for an Orthotropic Circular Conical Shell" by Thomas

D. Easter, Colonel M. Pearson and Melvin K. Richardson; Technical Report

C - "An Asympototic Solution for Conical Shells of Linearly Varying Thick-

ness" by Chin Hao Chang; Technical Report D - "Literature Survey with Ab-

stracts" by RaymondC. Montgomery; and Technical Report E - "Theoretical

Analysis of the Static General Instability of an Orthotropic Circular Cy-
linder Subjected to an Axial Load, EndMomentand Uniform Radial Pressure"

by William S. Viall and Carl C. Steyer. The final report for contract
NAS8-5168included these five technical reports as appendices.

SCOPEOFWORK

Investigations were simultaneously conducted in the following three

areas: analytical studies of conical shells; a study of the feasibility
of us_ inexpensive plastic cylinders for experimental investigations

of shell stability; and an analytical and experimental study of the stress

distribution in integrally stiffened flat panels. The studids of conical

shells were supervised by Dr. Chin Hao Changof the Department of Engi-

neering Mechanics while Dr. ThomasA. Carlton, Jr. of the Department of

Civil Engineering supervised the feasibility study utilizing small plas-

tic cylinders and Professor William K. Rey of the Department of Aerospace
Engineering supervised the investigation of the stress distribution in

integrally stiffened panels.

Conical Shells

Analyses of conical shells and conical shell segments subjected to

lateral normal loads were presented as Section 2 of the Stu_naryReport
for NASAContract NAS8-5012and as Technical Report C for NASAContract

2



NAS8-5168. In Appendix A, the analysis of conical shells of linearly

varying thickness subjected to lateral normal loads is presented. This

analysis includes corrections to a similar analysis which was previously

presented in Technical Report C for NASA Contract NAS8-5168. In a numer-

ical example, the corrected analysis was applied to a truncated semicir-

cular conical segment that had simply supported generators with the small

end fixed and the other end free. The lateral normal load applied to this

conical segment was assumed to be constant in the meridional direction

and to vary sinusoidally in the circumferential direction. The computer

program used in the numerical example is presented as Computer Program

1 in Appendix D.

The analysis of conical shells of linearly varying thickness was ex-

tended to include thermal loads in Appendix B. In a numerical example,

the truncated semicircular conical segment considered in Appendix A was

analyzed for symmetrical and asymmetrical thermal loads. The computer

program used in this analysis is included in Appendix D as Computer Pro-

gram 2.

In Appendix C an analysis is presented for truncated conical shells

of constant thickness. Two numerical examples are included. In the first

example, a truncated semicircular conical segment supported and loaded in

the same manner as the segment considered in Appendix A was analyzed for

constant shell thickness. The computer program used for this analysis is

identified as Computer Program 3 in Appendix D. In the second exsm_ole,

a conical frustum fixed at the small end and free at the large end was

analyzed for a moment applied at the free end. Computer Program 4 in

Appendix D was used in this analysis.

A paper titled "The Asymptotic Solutions of Conical Shells Subjected

to Lateral Loads" by Chin Hao Chang containing the results presented in

Appendices A and C has been accepted for presentation at the Fifth United

States National Congress of Applied Mechanics to be held in Minneapolis,

Minnesota during June 1966. An abstract of this paper will be published

in the proceedings of the Congress.

Plastic Cylinders

The study of the feasibility of using small plastic cylinders in

investigations of cylindrical shell stability was undertaken to determine



the nature of the problems encountered in fabricating and testing plastic

cylinders. Since one of the objectives of the study was to evaluate the

suitability of inexpensive cylinders for stability studies, a minimumof

special equipment was used in the fabrication process. However, the fab-

rication procedure was designed to produce cylinders of uniform quality

within the limitations imposedby the expense criteria. The results ob-

tained in this investigation were not expected to be comprehensive enough

to establish the validity of existing theories or provide useful design

data. Since the progress report pertaining to this phase of the contract

was deemedunsatisfactory by the Contracting Officer's Technical Repre-

sentative, a numberof revisions and additions were made in preparing the

final report based upon the general and specific commentsof the Contract-

ing Officer's Technical Representative. These changes are incorporated

in Appendix E.

Integrally Stiffened Panels

A series of tests were conducted to determine the stress distribution

in three integrally stiffened panels instrumented with uniaxial strain

gages and rectangular strain rosettes. All of the experimental data and

a comparison of all of the experimental data with one theoretical analysis

are contained in Appendix F. In Appendix G, a portion of the experimental

data is analyzed in greater detail and comparedwith five different theo-

retical analyses.

The study of the stress distribution in integr_ally stiffened p=_els

is being continued under the terms of NASAContract NAS8-20164.

Literature Survey

During the contract period, lists of published articles pertaining

to the contract subject matter and abstracts of certain articles were

submitted with monthly reports. This information is included in this re-

port as AppendixH.

CONCLUDING_S

Each appendix of this report is itself a complete report. Therefore,



where appropriate, lists of symbols, discussions of results, lists of re-

ferences and conclusions are included in the individual appendices. In

order to reduce confusion, the tables, figures and references in each

appendix have been numberedto indicate the appendix in which they appear

rather than being numbered consecutively throughout the report.



APPENDIXA

ONCONICALSHELLSOFLINEARLYVARYINGTHICKNESS

SUBJECTEDTOLATER_L_NORMALLOADS

By Chin Hao Chang

1'he contents of this :appendix were previously submitted as Progress Re-
port No. 1 for NASAConbract NAS$-III5%.
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APPENDIXA

ONCONICALSHELLSOF LINEARLYVARYINGTHICKNESS

SUBJECTEDTOLA_.NOPa_.L LOADS

By Chin Hao Chang*

INTRODUCTION

The theory of conical shells of linearly varying thickness in the

framework of generalized plane stresses of linear theory of elasticity

along with a general approach for solving the basic equations has been

LAISI. The three homogeneous equilibrium equationsgiven in Reference

in terms of three displacement components were solved by the classic

method of separation of variables. In turn, these solutions depend up-

on an eighth degree characteristic equation.

The basic equations may be regarded as the result of series expan-

sions of the stresses and displacements in a parameter k which depends

on the ratio of the thickness to length. Only the terms of zero and

first order of k are retained ih the expansions. In this paper, the

characteristic equation is presented in a different form than previous-

ly used and is solved by an approximate method that is consistent with

the theory.

n+_. -_e eight roots of the characteristic equation, four are real

and the other four are complex. When the parameter k approaches zero

asymptotically, it is found that the solution of the real roots corres-

ponds to membrane theory while that of the complex roots corresponds to

the bending effect. A general asymptotical solution is given including

eight undetermined constants.

Generally there would be no difficulties in obtaining the particular

solutions of the system due to lateral normal loads. However, when the

load is uniformly distributed along meridians, the solution is near a

*Associate Professor of Engineering Mechanics, University of Alabama
University, Alabama and Staff Associate for NASA Contract NAS8-11155.

INumbers in brackets designate references at the end of this appendix.



singularity of the system. It is at a singularity for the asymptotical

solution. The particular solution for this case is given.

For illustration, the analysis is applied to a semicircular truncated

cone which has two generators simply supported, the smaller circular end

fixed and the other end free. It is shown that the bending effects are

confined to the neighborhood of the clamped edge as would be expected.

BASIC EQUATIONS

Let @ and s be the circumferential and meridional coordinates

of the middle surface of an isotropic conical cone and u, v, w, be

the circumferential, meridional and normal displacement components, re-

spectively. Outward w is positive. When the thickness of the shell

h is proportional to s and independent of 9, one has

h = 5s (A1)

where 5 is a constant which for thin shells is very small. The elas-

tic law assumes the following relationships between the stress result-

ants and displacement components : 2

N _Lsv" + v (u' sec a + v + w tan a)-k s2w "'tan _]S

N@ =X)[u' sec a + v + w tan a + v s v"

+ k(v tan a + w tan 2 a + w" see 2 a * sw') tan a]

1

= v [su" - u + v' see (A2)
Ns@ 2

+ k (su" - u SW" + .--_----)tan 2 a]
sin a sLn a

N@s = _'_ [su" - U + v' sec a

+ k (v' sec a + sw" .w' ) tan 2 a]
sin a sln

2Further details are given in Reference _



M =_ks[s2w "" - sv" tan e + v (w" see 2 a + sw" - u' see e tan a)]
S

M0 =JOks[w" sec 2 a + sw" + w tan 2 a + v tan a + vs_w "']

MS@ = _Qk(l - _) s[(sw'" - w') see a- (su" - u) tan a]

(A2)

: • 1 1
MOS _k(1 - v) S[(Sw' - w' + _ v' tan a) sec a - _ (su" - u) tan a]

in which N s ..., M@s are stress resultants and stress moments per unit

length. The dots indicate partial differentiation with respect to s;

and the primes indicate partial differentiation with respect to 9; a

is the complement of the half central angle of the cone;

.I_ = F__ 52 (A3)
and k = 1"_

where E is Young's modulus of elasticity and _ is Poisson's ratio.

The six equations of equilibrium may be given in the followin_ form:

(sN)" + N' sec a - N O = - P ss @s s

(SNs@)" + N'@ sec a + N@s - Q@ tan a = - P@s

N@ tan a + Q'@ sec a + (sQ s)" = P_s

(SMs)" + M'@s sec a - M@ = sQs

(Ah)

(sMso)" +  'osec  +Mos = sQo

s(N@s - N $0) = MOs tan a

where Qs and Q@ are the transverse shear forces per unit length act-

on sections perpendicular to the s and @ directions; Pr' Ps'

and P@ are surface loads per unit area in the normal, meridional and

circumferential directions respectively.

Dropping the last equation of (Ah), which is an identity, and mak-

ing use of the fourth and fifth equations of (Ah) to eliminate the trans-

verse shearing forces Qs and Q@ in the other three equations, the



resulting three equations of equilibrium are :

t

s(SNs_" + sN@ sec a + s N@s (SMs@)" tan a

- Mos tan a - M'@ tan a sec a = - P@s 2

(SNs)" + NoS' sec a - N@ = - Ps s

sN@ SM's@) 'tan a + s(SMs )'" + ( " sec a + (aM @s )" sec

+ M@" sec 3 a - 8M O" = Pr s2

Substitution of the elastic law equations _2) into equations (AS)

results in the following equations of equilibrium in terms of the dis-

placements:

I + u"secZa + (I - v)su" - (I - v)u + I _ Vsv"secaVS2U" "
2

+ (2 - v)v'seca + w'tanaseca + k[2(l - v)s2u "'tana

3- v _ ,..
+ 3(1 - v)su'tanu- 3(I - v)u tana- --s°w seca

2

P@ s
- 3(1 - v)sw"seca + 3(I - v)w'seca]tanm = --

1 + v 3 .. l-v,,- - v)u'sec + s2v + --v sec-a
2Z z

+ 2sv" - (I - v)v + vsw'tana- (I - v)wtana (A6)

+ I - VSW,,.
+ k[_-_v"tanasec2a - vtan_ - s3w "'" 2 sec2a

P s

- 3s2w "" - 3--:-_"sec2a - sw" - wtan2a]tana - s
2

[u'seca + vSV" + v + wtana]tana + k[- 3 - ..
V'$2U ' secG.

- (3 + v)su''seca + (3 - 5v)u'seca - s3v "'" + --sv "sec2a
2

- 6s2v "" + (2 - v')v''sec2a - 7sv" - v(1 - tan2a)]tana

4w: " IVsectta 8s3w -'-+ k[s " + 2s2w ....sec2a + w + + 4sw'"sec2a

+ (II + 3v)s2w "" + 2w"tan2asee2a - (5 - 6v)w"sec2a

- 2(1 - 3v)sw" -w(l - tan2_)tan2a] = Pr___s

lO



Consider a segment of cone bounded by @ = 0 and @! and s = L l

and L, LI< L. _ For convenience, a nondimensional variable y is intro-

duced such that

:Fy (AT)

Observations of equations (h6), shows that the displacement functions

may be assumed in the form:

n 1 ain n_O
u = A n cos O'_

yXn-1 cos n.O
v = Bn sin "_i (As)

W = C ykn-7] c?s n__O_

n s_n 0_

in which An, Bn, C and k are constants to be determined.n n

The upper set of the sinusoidal functions in (A8) is for a complete cone

(@! = 2_). The lower set is for a segment of cone with two simply sup-

ported generator edges so that, along O = O and @i _2_)'

w = O, v = O, No = O, and M 0 = 0

The reactions along the two generator edges are given by

SO = QO + MOS at O = 0 and 0 !

(Ag)

(_7_7 _

SO is the transverse shearing force at a section perpendicular to the

O direction. The shearing force QO may be obtained from equations

(A4). In what follows the case in which only the lateral normal load

appears is considered. 3 Thus

PO = P = 0s

and p = Prn(Y ) cos n___O@
r sin 01 ( 11)

_4hen the other loads exist, one may follow a similar procedure

and by superposition obtain the appropriate solution.

II



Substitution of the assumeddisplacements and loading functions in-

to equations (A6) yields

dllAn + d12Bn + d13Cn= O

d22Bnd21An + + d23Cn= 0

+ d32Bn + d33% =LPrn(y)y3_ - knd31An (A12

where

I - v(I
dll - 8 + 3ktan2a)(9 - _) + m2

1
d12 = _+ _[(7 - 5v) + (I + V)kn]m

d13 = _+[I + _(3(9 - llv) + 8vl - (3 -

1 1 2
d22 = _(1 - k_) + (1 - v)(l + _m ) + k tan2m(l + --

1
d23 = _tan=[(2 - v) - V},n]

(AI3)

1
- _ktana[(l - 8tan2a + 2(7 - 3v)m 2)

- (3 + 2(1 - v)m;_)'X. + 3kn2 - k_]
n

d
33 = tan_ + l-_k[(13 - 12v) - 16 (i - tan2=)tan2_

+ 8(!! - !2v - 4tan=e)m 2 + 16o 4

- ÷ +
and

nit

= _ seccL (AI_)

The expressions for d21 , d31 , d32 are obtained by replacing _nwith -n

in dl2, dl3, d23, respectively. The plus and minus signs which appear

in front of one term correspond to the upper and lower set of sinusoidal

functions henceforth.

In order to have non-trivial homogeneous solutions of the system of

equations (A12), the determinant of the coefficients must vanish. This

12



results in an eighth degree characteristic equation for \n" Neglecting

the terms of second and higher power of k, as was done in the deriva-

tion of the elastic law (A2) yields the characteristic equation in the

following form:

G[X 4 10k 2 + 9] + k [kn8 6 + 4 2 +n - n - g6kn g/4kn - g2kn go] = 0

in which

G = 16(1 - v_)tan2a

g6 = /4(7 - 4v) - 8vtanSa + 16= s

g4 = 21127 - 136v + 24v 2

- 4(8 + 3v)tan2a + 8(4 - 3v2)tan4a]

+ 16[(17 - 12v) - 6tan2a! m2 - 96m 4

g2 = 4[203 - 316v + 120v 2

- 2(80 - 61v)tan2a + 40(4 - 3v2)tan4a]

+ 16[(71 - 72v) - /4(13 - lOv)tan2a

+ 8(2 - v)tan4a] m 2 (AI6)

+ 64[(13 - 12v) - 2(4 - v)tan2a! m4 + 256m 6

go = 9_13 - 12v)(5 - 4v) - 8(8 - 7v)tanSa + 16(4 - 3v2)tan4o_]

+ 16[(215 - 412v + 192vs) + 2(89 - 172v + 96v2)tan2a

+ 40(2 - v)tan4a] m2

- 32[(81 - 184v + 96v2) + 4(16 - 13v)tan=_ _ 8tan4a] m4

+ 256[(3 - 4v) - 2tan2a] m6 + 256m _

In view of the approximation made in the derivation of equation (A15)

the following approximate method is suggested for solving this equation.

Introducing

2

n = Xno + kXnl (AI7)

into equation (AI5) results in a sequence of equations associated _-rith

the various powers of k. The equations associated with the two lowest

13



D
powers of k are

Xs -lOX +9= 0
no I1o

and

X/4 3 2
no - g6Xno + g4Xno - g2Xno ÷ gO * 2G(Xno - 5)Xnl = 0

f tom which

XI = -

X = 1 and 9
no

X 4 3 2
no - g6Xno + g/4Xno - g2Xo + go

2G(X - 5)
no

Thus, one has two roots of k 2 which are denoted by
n

k 2 =I +k
nl

1 - g6 + g4 - g2 + go

8G

k2
n2=9-k

94- 9396 + 9294 - 9g2 ÷ go

8G

(AZ8)

(A29)

k 2 k 2
nl and n2

(A2o)

Substituting these roots into equation (AI5) yields a quadratic equation

2 which givesin In

n,:_

1 _ ka _ ka=  (g6 n2 nl)

ii2___ _ 9G) _ _ X2 _ k21 (go +"k" _(g61 n2 nl )2

_Xnlkn2 (A21)

Hence the eight roots of In are in two groups of four. One group of

four consists of real numbers while the other group of four consists of

complex numbers.

The next step is to solve for A and B in terms of C for
n n n

each root of In from any two of the homogeneous equations (A12). The

eight constants C shall be determined by eight conditions at Y =/___l
n _ n

and 1. The boundary conditions along the generator edges are satisfied

by the choice of sinusoidal functions of the angle @. At the two cir-

cular edges one has the following four boundary conditions at each edge.

lh



For a built-in edge:

u = O, v = O, w = 0 and w" = 0

For a free edge:

(A22)

where

Ns = O. Ms = O, Ss : 0 and Ts = 0 (A23)

s : Qs ÷ ! M_osec=S s

MsO
= ---tana (A2_)

Ts Ns@ s

are the transverse and tangential shearing forces, respectively, acting

perpendicular to the s-direction. The shearing force Qs can be obtained

from equations (Ah). For a simply supported edge:

and

w = 0, M = 0 N = 0 or v = 0
s s

T = 0 or u = 0
3

ASYMPTOTIC SOLUTIONS

As the parameter k approaches zero, the two groups of roots

approach the xollowing asymptotic values:

n

where

The subscript

plicity.

= + i k3= + 3_I - '

2 4 (A26)

k 5 = p(l+i),_ }-/ =-P (l+i)_

6 8 (_7)

n

p= J_G 1
(A28)

has been and henceforth will be dropped for sim-



When the first group of k, _i' (i = l, 2, 3, and h) is substituted

into the first two equations of (A12) to eliminate A. and B and
i i'

only the leading terms are retained, the solutions (A8) assume the fol-

lowing form:

I _ mtan_ ( CI _ C2 1 C3
u = I m2 - I " m 2 --2(1 - v)y 2 + _ y2

4 + 4v - m2 _} sin n_@
m2(7 - 2v - m =) cos O--? (A29)

I
v = tana _ + _ 1 cos n_@

m - 1 m 2 2(1 - v) _ + m2 - 2v sin -_I

I { C27-2 C3Y2 C4y-4 } --w = C1 + + + COS n_O
sin @I

When the second group of X, _j, (J = 5, 6, 7, and 8) is used, fol-

lowing a similar procedure, and using some identities to convert the

complex expressions into real expressions, the solutions are as follows:

II - =_y-,l{ F [C6cos(.pLnyu = + 2(2 + v)mtan ) - C5 sin(plny)]

_ y-P[c8cos(pCny ) _ Czsin(plny)] } sin nw__Q
cos OI

II
v = _ vtana_y-I I yP_C 5 - C6)cos(pLny) + (C5 + C6)sin(pLny) ]

- y- P[(C 7 + C8)eos(p_py) - (C 7 - C8) sin(_ny)]j cossin_

(£3o)

II
w

-I

= y { YP[Csc°s(plny) + C6sin(p_ny) ]

+ y-P[C7cos(pLny ) + Cssin(pLny)] _ cos nn__@Q
sin O1

It is noted that the solutions of the first group correspond to

those of membrane theory.

Based on the solutions (A29) and (A30), one may establish the orders

of magnitude of the displacement components h as:

_t is assumed that the parameter m defined by (Alh) is limited

to small values such that differentiation vith respect to @ does not

affect the order of magnitude.
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I I I II 1
u , v , w , w = 0 (tO)

P

II _ II Iv = 0 ( ) and u = 0 (_2

(A3i)

I I wI 'Due to u , v and the magnitudes of the corresponding stresses

NsI , N@ I and N@sI obtained by use of relations (A2) are also of the order

1 1

of (7) and the moments are of the order of (o-_)__and higher. The

order properties of the stresses due to u II, vii and w II are not as

obvious and will be examined further in the discussion that follows.

Changing the variable s to y according to (A7) and then to

such that

½
Y = T (A32)

and neglecting the terms which are of the order of _3 and higher,

the stress-displacement relations (/12) assume the following form:

I

N s =_[_P_ + v(U,gSeCa + v + w tanc)]

I
NO =#O[(U,oSeCa + v + w tans) + _vp_(v,I ]

= 1 - vrl
N@S NS@ = _""'_[_'p _ U,_ - U + v, @sees]

,1

[ 2w,v? ( 1 -M s =42kL I _ 2 + 1 _p_w,_l _ I tana

+ v(w,oosec  + ½p w, - u,osecstans)}

M@ =_kL[w,.@@sec2s + 2P_w,_ + wtan2s + vtans

+ v 1

(A33)

L 1 1
MsO =_k(l - v) [_p[w,f(Osec s _ w, osec s _ 2_P,lu,_tan=

+ utana!

MOs = _2kL(1 1 1
- v)[_P_W,_oSeCS - W,OSecs - _p_ u,_tana

1
+ 2 u tana + _ v,@tana seca]

17



where a subscript preceded by a comma represents the appropriate

derivative.

When the displacements

ii 1

U = U = _2 U

II 1
V = V = -- V

P

II
W= W = W

(A3h)

are substituted into relationships (A33) and only the terms with the

(4) are retained, the following relationships arelowest order of ob-

w

tained:

I _V, + v W tana]
S

NO II =_[W tan= + _v_V,_ ]

II NOS II =_! - v 1Ns@ = 2 p

Mall =_L(I - v2)tanaa_2

M@ II = vMsll

(A35)

Ms @II =_2L(I - v)tana=13, 1_ W,@ _,seca

in which the relation

4
k = _ (I - v 2) tan2= (A36)

obtained from expression (A28) has been used.

Note that the normal stresses, NsII and N@ II, are of the same or-

I and N@ I It can be shown, however, that N@ I andder as that of N s

N II vanish identically. When only the terms of the lowest order of (1)

are retained, one has

lg



I I I II
U = U , V= V , W = W _ W

Ns = NsI' NO = NOII' _0 = NOs = NsOI (A37)

M = M XI,
S s M 0 = MOII'_O = MOs = MsO II

By a similar comparison of order properties, one can show that the trans-

verse and tangential shearing forces defined by equations (AlO) and (A2_)

are

= Soil , S = S II Ts Tsl IS0 s s ' = = NsO (A38)

Thus, in the two sets of solutions, the membrane and bending effects are

coupled by the lateral deflection w and are not separable.

Using equations (A37), (A38) and (A34) with the solutions (A29) and

(A30), the stresses and moments may be given in the following final ex-

plicit form:

C2 -2
N = - 2_ tan_ [m2 Ys - 2(1 v)

3C4 -4 cos n_O

* me - 7 +' 2v y ] sin -_1

N O = ESy-ltana{yP[CsCoS(p{ny) + C6sin(pfny)]

+ y-P[c7cos(p_ny ) + C8sin(pLny)] } cossin "_In_@

Ns@ = I = + E6 { 6rant _ ..-4) sin n_O

2E5

M s = p-_ tan2a Ly{yP[C6cos(p_ny) - C5sin(pfny) ]

: COS nr_O

+ Y-P[- CsC°S(p_ny) * C7sin(p_nY)] J sin "_I

M@ = _M s

SO =
- 2E6 -I
._ _ m(2 -- v)tan_;w { yP[c6cos(p_/ny) -. Cssin(pfny)]

* y , [.. CscoS(p/ny ) . C7szn(_-eny)] ] sin n.O
J cos @1

(A39)
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D

and

S E8 tan2.2y-1 f o.. .= -- y' [_, -. C5 * C6)cos(p_uy) - (C 5 C6)sin(p_ny)]
s p

+ y-P[(Cff C8)cos(o_ny) - (C 7 - C8)sin(p_ny)]_c°s nJ_@9
_3 sin OI

9w _w II

_s as

1 -3
= _-_py { YP[(c5 + C6)cos(p_ny) - (C 5 - C6)sin(pgny) ]

_y-P [(C7 _ C8)cos(pLny ) + (C 7 + C8)sin(p_ny)] } cossinn_O@__T

PARTICULAR SOLUTIONS DUE TO LATERAL NORMAL LOADS

Let the lateral normal load given by (All) be expressed in the form

L_ya _
Pra(Y) = an (/140)

i,e.

P (S) = a s_
rn n

where an and _ are prescribed.

One may assume a set of particular solutions in a form similar to

expressions (A8) except that in this case _ shall be replaced by

_* = 2_ + 3 (Ahl)

a known number. The particular solutions are readily obtained by solving

simultaneously the three algebraic equations (A12) provided that _* is

not one of the roots of the determinant. However, in one of the most

common loadings, the load is uniformly distributed along meridians so

that ? = O. Hence _* = 3 which is one of the roots for the asymptotic

case. In this case, the approach must be modified. In what follows the

particular solution due to this type of uniform load is given.

Since in this case _* is a finite constant when the parameter k

approaches zero, the corresponding particular solution may be obtained

2O



D
from the equations of membrane theory for the system.

Setting k = 0 and transforming the independent variable s to

y, equations (A6) reduce to the following equations of equilibrium from

membrane theory for a lateral load Pr:

+ 3yu,[Y2U'yy y

1 + V

- 8u] + _yU,oySeCa + U, ooSeC2a

+ (2 - 'J)v,0seca + w,0seec tana = 0

1 + _ 2 1 2 3--_---yU,@ySeea - (I - v)u,@seca + _y V, yy + _yV, y

(/042)

1 - v 1 tana- (1 - v)wtana = 0
+ _,Oosec2a - (1 - v)v + _vyW, y

I

u, gseea + _vyv, Y

L 2
+ v + wtana = :-_,------P/_

_an _ _

where

P = a cos n_O
r n sin 0-_ (A_3)

Let the particular solutions of equations (Ah2) be assumed as fol-

lows:

u = _(d 1 .. d2tny)y._ sin n_O
cos O1

v = (bl + b2zny)y sin O1 (kh_)

P

w = el(l . _ny)y2 cos n_O
• sin O1

in which dl, d2, bl, b 2 and eI are constants to be determined. When

these assumed solutions are substituted into equations (Ah2) and the

sinusoidal functions and 22 are cancelled, the three equations are in

the following form:

fi_.lny + he = an L Fbtana _ ¢3
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where the subscript c (c = I, 2, 3) indicates the three equations of

(Ah2) respectively, f and h are expressions of the physical constants

ti_at are to be determined, and 53 is the Xronecker delta.

By equating the coefficients of both sides of equations (AhS), two

sets of algebraic equations are obtained. Each set contains three equa-

tions of the form

f¢ = o

h_= an Ltana_ 8¢3 (AhT)

There are, however, only two of equations (Ah6) that are independent

because _ = 3 is one of the roots of the determinant. Thus the five

constants may be determined by the five independent equations of (Ah6)

and (AhT). The results are:

P
U = +_L m[ 1tana E--__ _ [2m4 - 3(5 - _)m 2 - 3(1 + v)]

÷(m 2 - 7 + 2v)_ny } y2 sin n.__@
. cos 91

P a n L 1 [3(1 - 2v> - m_]y a cos nrrO
v = tana E-'86 sin O-"_"

p a L 1 m2[m a 7 + 2v](l + dny) cos y2 nnO
W = t-'_naE'5"_ - sin 0""_

When these displacements are substituted into the e_ressions (A2) _ith

k = 0 the corresponding stresses are

p anL {I } cos nu@
NS = tancL _ (3- m2)y 2 sin 0"-_

anL nuO
NJ- tana iy2] cossin (Ah9)

n_9

l_s@ + anL ra @l- tanc [_ yejsin--cos

22



These particular solutions combined with those given by solutions (A29),

(A30) and (A39) constitute the complete solutions.

NUMERICAL EXAMPLE

For the purpose of illustration, consider a truncated semicircular

cone with the two generators simply supported. The lower set of solu-

tions (A29), (A30), (A39), (A_8) and (A_9) apply in this case. Let the

cone be clamped at the smaller end where s = L1 and free at the other

end where s = L so that

_ = 0 at y =_LL_IU : v = W= 8S

Ns = Ts = Ms = Ss = 0 at y = I

By making use of the first two in each of the preceding two sets of

boundary conditions, the constants C1, C2, C3 and C4 can be determined.

The other four constants can then be determined by the remaining four

boundary conditions.

The lateral normal loads are also known as wind loads. Usually

there are two types of such loads: symmetrical and non-symmetrical.

Since the asymptotic solutions are valid only for small values of n,

only the two cPses of n : 1

Let

an = p

= 0

and n = 2 are considered.

for n = 1

for n > I

(ASI)

so that

P = p sin@
r

represents a s_v_netricel load.

n

= 0

FoF

for n = 1

for n = 2

for n > 2
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so that

p = p(sin@ + _ sin 20) (A52)
r

represents a non-symmetrical load. These two types of loads are shown

in Figure A1.

For the numerical computations, the following values were assumed:

a = 75°, v = - = 0.90
3' (A53)

t
Considering _ as a parameter where R is the principal radius at a

t
section of thickness t, 5 = _ cost. The eight roots of _ computed

from expressions (A20), (A21) (A26), and (A27) are listed in Table A1.

Comparison of the values of the roots for n = 1 and n = 2 with the

asymptotic values shows that, for this case, the asymptotic results are

satisfactory for practical use.

The asymptotic solutions for displacements, stresses and moments

computed from expressions (A29), (A30) and (A39) combined with (AL8) and

(Ah9) may be given in the form:

F (y,@) = fn(y ) sin n____@ for n = 1 and 2
n cos O1

(_!;)

The function fn(y) is plotted in Figures A2 through All.

CLOSING _S

There are a number of approaches available for obtaining solutions

for shells of revolution. Kalnins [A2] obtained a solution by treating

the system of equations as a series of initial-value problems and in-

cluded a conprehensive bibliography. Conical shells subjected to edge

loads were studied by Clark and Garibotti [A_ by using the edge effect

approach.

The solutions presented in this appendix are in explicit form and

are readily used for practical purposes. The asymptotic solutions are

2L



exact and applicable to conical shells if

t cos )J ½(M <( 1.

When the above parameter is very small the symptotic solutions may be

useful for conical shells of both linearly varying thickness and constant

thickness.

In the numerical example, the bending effects diminish rapidly as

the distance from the clamped edge increases. This is known as the edge

effect or boundary layer phenomenon. The moments and shearing forces

due to the bending effect are of higher order than the membrane stresses.

However, the membrane stress N@ induced by the bending effect is of

the same order as the other membrane stresses. Therefore, solutions ob-

tained by the membrane theory alone not only are incompatiable but also

contain some errors that are not negligible for the membrane stress N@.

The deflection, particularly the normal component at the free end,

in the given example is large compared to the thickness. For such a

large displacement, the theory is applicable provided that the shell is

not overstrained _4] • Thus the strain at the fixed end controls the

validity of the results.
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O. 004

X._ O. 006

O. 008

0.004

X3 0.006
4

0.008

0.004

k5768 [ 0.006

I 0.008

n=l

+0.999999

+0. 99999 7

+0.999995

+3.00003

+3,00007

+3.00013

n=2

+i. 0523

+I. 1142

+I .1955

+2.9851

+2.9663

+153.27(1. 0027+i)

+125.09 (I. 0035+f )

+I__ 08.28(1 0045_i)

+2.939 7

4

Asymptotic
Values

+I

__+152.75(1. 0099-+i)

+124.51 (I .O149-+i )

-+107. 77(I. 0198__+i)

+1
-I

+I

+3

+3

+3

+153.48(I+i)

_+125.32(I±i)

-+I08.53(I if)

TABLE A1. - VALUES OF I
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APPENDIX B

THE THERMAL EFFECT ON CONICAL SHELLS

OF LINEARLY VARYING THICKNESS
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The contents of this appendix were previously submitted as Progress Re-
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36



APPENDIXB

THETHERMALEFFECTONCONICALSHELLS

OFLINEARLYVARYINGTHICKNESS

By Chin Hao Chang*

SUMMARY

A study of an isotropic conical shell of linearly varying thickness

under a surface temperature was madein which the thermal effect on the

shell was represented by an equivalent load. Asymptotic particular so-

lutions due to the thermal load were obtained. These solutions maybe

combined with the complementary solutions of the shell obtained in Ap-

pendix A to constitute a set of complete solutions. A numerical example

of a semicircular cone frustum subjected to temperature functions that

are constant along the meridians and have a sinusoidal distribution in

the circumferential direction is given.

INTRODUCTION

Analytical solutions of conical shells including thermal effect are

not generally available. In this appendix an asymptotic solution of an

isotropic conical shell w_th 1Luearly va_ng thick_ess that _cludes

the thermal effect was obtained by following the method developed in Ap-

pendix A in which the basic equations and the complementary solutions of

these equations are given. These solutions are applied here without any

alteration and the particular solution of the system of equations due to
a thermal effect is obtained.

The thermal effect maybe represented by an equivalent load which
will be referred to as a thermal load. The thermal load is derived in

the next section. The derivation considers a shell of revolution that,

in general, has two principal curvatures in two respective membranedi_

rections. Letting one of the two curvatures vanish and specifying the

*Associate Professor of Engineering Mechanics, University of Alabama,
University, Alabamaand Staff Associate for NASAContract NAS8-11155.



other, the thermal load for a conical shell is obtained. This thermal

load has componentsin all three directions of the reference coordinates
used.

The temperature distribution considered is assumedto be a linear

function of the normal coordinate and an arbitrary function of the two

membranecoordinates. This type of temperature distribution is common-

ly used in shell theory as was the case for cylindrical shells in [B_ i.
It is shownin this appendix that, for asymptotic solutions, the

temperature variation in the normal direction is negligible. The asymp-
totic solutions are discussed. The solutions for the particular case

of a constant temperature distribution along the meridians of the coni-
cal shell and a sinusoidal distribution in the circumferential direction

are presented. Combining these solutions with the complementarysolu-

tions of the shell obtained in Appendix A, a ntm_rical example of a semi-

circular cone frustum is given. The displacements, stress resultants

and stress couples of the cone frustum are presented graphically. It

was found that the effect of this type of thermal load is similar to
the effect due to a lateral normal load.

THERMALLOADS

Let @ and @ be a set of orthogonal curvilinear coordinates de-

scribing the middle surface of a shell of revolution with a set of prin-

cipal radii r and r@. _en tlhe classical Duh_mel-Ne_unar_law w^_@

thermoelasticity [B_ is used, the stresses, strains and temperature are
related as follows :

@ l_v2 @+ _@ - (I +v )IBT]

E

_@@ - 2(i+ v) _9@

INumbers in brackets designate references at the end of this appendix.
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where _ and _@ are normal stresses, i_ and _@ are normal strains

in the _ add O directions, _@c__ and _9_ are shearing stress and

strain respectively, T is a temperature function and ? is the coef-

ficient of linear expansion, e

In what follows the relations for that portion of the stresses as-

sociated with the temperature function T only will be considered be-

cause those for the other loads are assumed to be known. The additional

stresses due to T may be expressed in the form:

T
a s _

@

T

in which

E-_--T(@, @, z)
1-9

T(@, @, z)

(B2)

T(_, 9, z) = To(C, 9) + z TI(¢, 9) (B3)

where the coordinate z is in the normal direction of the middle sur-

face, positive outward. The corresponding membrane _stress resultants

per unit length N@ T' uN^T and stress couples per unit length M T

M@ T due to the stresses (B2) are defined by

t/2 t/2

N T . c; _(I+ )dz, =N9 _ a@ _(i+ _)dz

/2 -/2

t/2 t/2

MT _. z__) - /.t
®- - o$(i÷rozdz,MC- oo_(I÷Z)dz

-t/2 -/2

(B4)

and may be expressed in the following form:

N@ l-v o + r9 1-_

_Symbols other than those defined in this appendix are the same as

those used in Appendix A.
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14v i (B5)

[_ _]_M@ T = _ I + I-_

The foregoing expressions maybe converted into those for conical

shells by letting

r@ =_, @ = a, r@ = s cot_ (B6)

and the results are

T
N
S

m

I.V _ o + I-_ _-t

_t[o]N@ T = - _ T

_o _3 FT^
= --l---------------_-_ tan_ +

Ms 1-v 12 JT1h_

(BT)

t 3_o_"__ B]
For conical shells with linearly varying thickness, t = 6s, and

expressions (B7) become

T
N
s

_v



Ms I-_

k s3
_ = l-v

2

where k = _2" When these stress resultants and couples are substituted

into equilibrium equations (A_) of Appendix A and the additional terms

psT, T and p@T, one hasare denoted by Pr

Ps T = (sNsT)"- N@T

=-E-_[TI-_ o"s2+Tos+3kTls2tan_ +kTl'S3tan_]

T
P
r

= sN@ T tan_ + 2S(MsT)" + s2(MsT) ""

ToS2 [( ". ,. 12s3TI )= - I-_E-_ tane - k s5T 1 + 8sa T1 +

+(sh"To o o+ 6s 3 T + 6s2T ) tan (B9)

p@T s(N@T), sec e -(M@T) ' tan_ sec(_

= -E-_ _S2To') +kTl'S3 tane]secely-

The above three expressions may be considered as the three components

of the thermal load in the respective directions.



ASYMPTOTICSOLUTIONS

It was shownin Appendix A that, for thin shells, the asymptotic

solutions are pertinent for practical purposes. In what follows, asymp-
totic particular solutions of the shell due to the thermal load will be
obtained.

Retaining the terms of the lowest order of k, the thermal loads
(B9) are simplified to the following form:

PsT" - E-_ _oS2 +ToS]l_

P T= - E_-_IToS2 tana]r i-_ (BIO)

p@T _IS2To, J= - sec

Note that the temperature function TI is not involved in these expres-

sions.

For asymptotic solutions, the set of membrane equations may be used.

Using the dimensionless variable y :as the independent variable to re-

place s, the three equilibrium equations of membrane theory including:

2_I_A j_ ther_ml loads t_ tA,_ __. ........_o±vy were obtained ±_-u1.1_---equations t_y u_ _pp_u±_

A as:

I-_ ly2 ul I+_ 2-8-- U,yy + 3yU,y - 8 + -_--yU,@y seca + u,@@ sec

+ (2-_)v,@ sec a + w,@ seca tana = (I+_)_L y2To, @ seca

l+_ 3(1-_)u,@ sec_ + _ y V,yy-_- yU,@y seca - i 2 + _ yV,y

(Bll)
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+ v,@@ sec 2 (l-_)v + I- _ v2W,y tans - (l'v)w tans

-(1+4 )_ L y2 [lyTo,y + To]

u,@ seca + I _yV,y y2 tan+ v + w tan _ = (l+v)_ L W°

Let

To = QnY_n cos nu@ (B12)

where Qn and _n are prescribed constants presumably real and finite.

The particular solutions of equations (Bll) may be assumed in the fol-

lowing form:

uT= sin n_9cos

cos nu@
(BI3)

WT = Cnykn -I cos nu@
sin @1

in which coefficients An, B and C are to be determined. On substi-n n

tuting e_pressions (B12) and (B13) for equations (Bll_ factoring out the

sinusoidal functions and setting

*= +3
Xn _n (Bl_)

three linear algebraic equations are obtained for the three unknowns An,

and C . These equations can be solved by Cramer's rule providedBn n
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that in does not make the determinant of the equations vanish. When
.

_n = 0, In = 3 is one of the roots which will makethe determinant van-

ish as has been shownin Appendix A. Physically this represents the case
in which the temperature is constant along meridians. In this case the

solutions are obtained by the samemethod as was used for the lateral

normal uniform load in Appendix A.

Let

[_ ]my] sin n_@UT . + d2 y2 cos @--_

VT" b y2 cos _ (BI_)
sin @I

cos nu__@@
wT- c(l+ L_y)y2 sin 91

in which _, d2, b and c are constants to be determined. When the as-

sumed solutions (B15) combined with (B12) are substituted into equations

(Bll), the constants are:

I m_LQn [- F2 )t_ t_l+3V) - (5-v)tan_ -L ,m 2 -_ (i+v)] (i-t_

d m n{ }= _ _i_ 1 + 4v - m2) - tan _(7 - 2v - m2)

_2_LQn{1 [ _}
b = _ _, - tan _ + 3 tans (1 - 2v) +

m

(BI6)

m

= __ d2c tan a
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The corresponding stress resultants due to the thermal loads are

readily obtained by use of the elastic law. The results are:

( )] cos nn@NsT = I-_E82 1 = V)b - mV(d I - d2 2 sin -_l

= [v(l + V)b -d2) _N@T I_ - m (dI y2

cos nu@

(B17)

s cos @l

The stress couples induced by such thermal loads are of higher order

and may be neglected. Combining the solutions (B14) and (B]7) with the

complementary solutions obtained in Appendix A the complete solutions

are obtained for this case.

NUMERICAL EXAMPLE

Consider the semicircular truncated cone with two generators simply

supported, the smaller circular end fixed and the other end free that

was discussed in Appendix A. As in Appendix A, the following parameters

are assumed:

i Fm 75°' v = _ and = 0.90 (Bl8)

Numerical results for n = I and 2 were computed that can be used for

symmetrical and asymmetrical distributions of temperature similar to the

distribution of wind loads discussed in Appendix A. The results are given

in the form

Fn(Y,@) = f (y)n

sin n_@
n-- i and 2 (BSg)

cos @l
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in which the function fn(y) are presented in Figures BI through BIO

t
for _ = 0.004, 0.006 and 0.008.
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APPENDIX C

AN ASYMPTOTIC SOLUTION OF CONICAL SHELLS

OF CONSTANT THICKNESS

By Chin Hao Chang

The contents of this appendix were previously submitted as a part of
Progress Report No. 6 for NASA Contract NAS8-11155.
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APPENDIXC

ANASYMPTOTICSOLUTIONOFCONICALSHELLSOF

CONSTANTTHICKNESS

By Chin Hao Chan@×-

SUMMARY

A solution of truncated conical shells of constant thickness is ob-

tained as the ratio of the thickness to_the radius at the larger end goes

to zero asymptotically by separating the solution into two parts: mem-

brane and bending. These two parts are coupled by the lateral displace-

ment. A particular solution due to lateral normal loads is also given

and two numerical examples are presented. Onenumerical example consid-

ers a semicircular shell segmentwith the smaller end fixed, the other

end free and the two generator edges simply supported. The shell is
subjected to a lateral normal load which is constant in the meridional

direction and varies sinusoidally in the circumferential direction. The

other numerical example considers a cantilevered complete cone with the
larger end free. A rigid plate is attached to the free end and a moment

is applied. Comparisonswith other available results are given in both
examples.

INTRODUCTION

Concial shells of constant thickness have been studied by a number
of investigators. The axial symmetrical solutions of such a shell have

been well established EC1,C2_ _; while for asymmetrical cases the solu-
tions have been approached two different ways. Oneapproach uses the

method of power series _2, C3 and C4_, while the other treats the mem-
brane and bending solutions separately. It has been found that, by

*Associate Professor of Engineering Mechanics, University of Ala-
bama, University, Alabama and Staff Associate for NASAContract NAS8-11155.

INumbers in brackets designate references at the end of this appendix.
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keeping the first order terms only, the bending solutions are in the

form of Bessel functions _S. In reference [C5], by recognizing the

rapid decay of the bending solutions near edges, an edge-zone solution

was also presented to replace the solutions of Bessel fuhctions. The

series approach was not recommended by several researchers EC_,power

_7] because of slow convergence.

It was found in Appendix A that, for conical shells of linearly

varying thickness, the solution consists of two parts: membrane and

bef_Hmg effect. Both parts are e_pressed as polynomial functions of yl

as far as the y-function is concerned, where y is a dimensionless vari-

able of length measured in the meridional direction and the l's are

real constants for the membrane solutions and complex numbers for the

solutions of bending effect• Furthermore, the l's of the membrane

solutions will approach finite values while those of the bending solu-

tions will become infinite as the ratio of the thickness of shell to

the radius at a section approaches zero. These different characteristics

of the two parts of the solutions enables them to be treated separately.

Since conical shells of linearly varying thickness and those of

constant thickness will behave alike when the ratio of thickness to ra-

dius is very small, in this report an asymptotic solution of conical

shells of constant thickness is obtained by assuming that the solution

possesses characteristics similar to the solution for conical shells of

linearly varying thickness. The asymptotic solution obtained includes

the particular solution due to a lateral normal load. T_o numerical ex-

amples are also given. One is for a semi-circular cone frustum similar

to the one given in Appendix A. This example is designed to compare the

results for the same shell with different types of thickness. The other

is a complete cone frustum with the smaller circular end fixed and the

other end free. At the free end a rigid plate is attached and a moment

is applied• A solution for the latter example is available in _5S so

that a comparison can be made between the two solutions.

BASIC EQUATIONS

A set of exact equations for shells of revolution of isotropic and

elastic material within the framework of generalized plane stresses of

linear theory of elasticity is given in explicit form in Reference _
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For thin shells, using the approximations rI + z_r I and r2 +z_r 2

where rI and r2 are two principal radii of the middle surface of the

shells and z is the normal distance measured from the middle surface

to a generic point, the elastic relations between stress resultants,

couples and displacements are simplified considerably. For a conical

shell these relations are:

N
S

D 1

L 2
Y

°

[_yv + u(u'sec a +v+w tan a)]

D I v
L 2[u' sec a +v+wtana +_-yv']

Y

Ns8 = Nes -

D 1-9 1

L 2 2
Y

1
[_yu" - u+v' sec a]

1 1 2 . . _lw,, 2
M = Dk -_-[_'(y w - yw') + u secS

Y

1
a +_yw')]

(Cl)

= --41 [w" 2M 0 D k sec
Y

1 . v (y2 ..
a +_yw +_- w - yw')]

Ms8 =
1 1 w' " w'

Mss = D k (I - v)--_[_y sec a - sec a]

Y

in which Ns,..., Ms@ are the normal and shearing stress resultants

and couples in the directions indicated by the subscripts and Y =JL"

The s and @ are meridional and circumferential coordinates of the

middle surface of the shell; u, v, and w are the circumferential, mer-

idional and normal displacements, respectively. Outward w is positive.

D and k are defined as follows:

D - Et 1 t 2 1 R 2 2l_u2 and k - 12 (_) = 1--2 ( ) cos a (C2)

_6



where E is Young's modulus of elasticity, v is Poisson's ratio, t

is thickness, L is the length from the apex to the larger end of the

shell, R = L cos a is the radius of the shell at y = l, and the a is

the base angle of the shell. The dots indicate partial differentiation

with respect to y and the primes indicate partial differentiation with

respect to @.

When the equation of equilibrium of moments about the normal of a

surface element is overlooked, the other five equations are:

I

_YN s +N s

2

+N' sec a - N 0 P Ly{}s s

1 " + 2Ns0 + ' - Qe tan a - PeLy 22 y Nse N{_ sec a

1 2

2YQs +Qs+Q_} sec a +N etan a = PrLY (c3)

1

_YM s +M s + M' sec a - M e 20s = Ly Qs

1 " + 2Ms0 + ' sec a = Ly2Q{}Y Ms{ } M e

where Qs and Q@ are the transverse shear forces per unit length act-

ing on sections perpendicular to the s- and @- directions; Pr' Ps'

and P@ are surface loads per unit area in normal, meridional, and cir-

cumferential directions, respectively.

The eleven equations in (C1) and (C3) govern the eleven unknowns in-

volved. When the last two moment equations of (C3) are used to eliminate

the transverse shearing forces Qs and Q@ in the second and third e-

quations of (C3), the first three equations of (C3) become
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I " +N +_
YNs s _'Os see a - N O = - p Ly 2s

1 !

YNs0 + 2Ns0 + N O sec a
1 ¸ 1

[_-,.Y Ms0 + + tan• Mso Mos2
Ly

+M_ tan a sec a] = - PoLY 2

(cb)

N O tan a + 1 1 2 3 .
LY 2 [_-Y M"s + _- yM s + (yM_''s_ -_ 2 M's0} sec a

,, 2 I
+M 0 see a - _y M0] = p Ly 2r

Substituting equations (CI) _mto (C4), three equations for three unknown

displacements are obtained. In what follows, instead of dealing with

these three displacements, each displacement will be divided into three

parts: the first part is due to membrane action, the second part is due

to the bending effects and the third, the last part, is for the partic-

ular solutions due to lateral normal loads. Denoting these three parts

by superscripts I, II, and P, respectively, the displacements may be ex-

pressed as

I 1111 PU = U + +U

I vii Pv : v + + v (c5)

I wII PW = W + +W

These three parts of solution will be discussed in the following sections.

MEMBRANE SOLUTIONS

The membrane solutions of conical shells of constant thickness are

well known. However, available solutions are presented in forms of stress

only. In what follows, the displacements will be obtained.
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When equations (CI) with

the three equations become

k = 0 are substituted into equations (Ch),

l-u 2 l-u l-v

--_-y u'" +---g--yu" 2 'sec2- _u+ u' a +_l*u
4 yv ' sec a

+

3-13

v' sec a +w' tan a sec a
2

1
D L2y4P0

1 2 . _ 2
l+t,yu" - 3---2u' sec a + _-[y v" "+ yv ]+ I-_ ,,sec a 2 2 v sec

v . 1 2 4
- v + -_ w tan a - w tan a - D L y Ps

u = 1L2 4
u' sec a +v+wtan a +_-yv" D YPr

Assume

u = Ay x sinn_rO
cos 01

By x cos nw 0 (C7)
v = sin O

I

Cy× cos n_ 0W
sin 0

1

where _ is an unknown constant; OI is the central angle between two

generators. Substitution of equations (C7) into the homogeneous part of

equations (C6) and cancelling out the y and sinusoidal functions, one

has three homogeneous algebraic equations for three unknown constants A,

B, and C. Letting the determinant of the equations vanish in order to

have nontrival solutions, results in the following characteristic equa-

tion for l

5)



A2(A2 _ 4) = 0 (C8)

When the values of _ are determined and substituted back into the al-

gebraic equations one may express the constants A and B in terms of C.

This gives the first part of the solutions of the displacements as fol-

lows :•

2
I $I___ m l-v 2

u = _ C3Ym2 1 [C1-- ( Lny) C2] +2(m2-1}

2

+ m -2(1+o) -2 3 sin nw0
2 C4 y j cos 01m -4

2

I t 1 _ (. m :.y. _ny)C2] + 2v = -'_"-- [ C 1 2
m -1 2(m 2-I) m -4 -2} cos nv0C4 Y sin 01

(c9)

I
W

w he re

1 {C 1 + C 2 Lny+ C 3 y2 + -2tan a C4Y cos n_ 0sin 01

n_
m - -- sec a

01

The corresponding stresses may be obtained from (CI) as

N I _ Et t 1 -2 2 -4} cosn_r0s L 2(m2-1) C2Y m2-4 C4Y sin 01

NI = $ Et 2 -4 sin nwO

sO L m(m2_4) C4Y cos 01

(cio)

NI0 vanishes identically.
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)
BENDING EFFECT SOLUTION

It was shown in Appendix A that the displacement functions due to

bending may be assumed in the following form:

II i

u 2

(Cll)

II I
v = _ V

.¢

and

II
w = W

where

4 : i6 (ci2)

Thus _-.-_ as t/R-_O. Furthermore, the y-function of U, V, and W may

be expressed in forms of yCY where c is a finite constant. Thus the

differentiations with respect to y will change the orders of magnitude

is introduced such that

= y_ (c13)

When expressions (Cll) and (C13) are substituted into the elastic rela-

tions (C1), reta2n_ng only the terms of the lowest order of _ , yields
%-

N = D 1
s L[2 _ V, + u W tan a]_3

2

2

D i
N o = [W tan a + ._ V, ]0L 2
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Ns0 = N0s

M = D-_[D
S

Y

D l-ul I

h 2 + V, 8] see a •

W, + "q W,
-q-q

]n

2

Y

_ ! (elL)
Y

M 0 = uM s

Mso= Mos = D---_(l-v)W, on
Y

sec a • 11

4

Y

Transforming the variable y to _ and making use of the asymp-

totic expressions (Clh), the homogeneous part of equations (Ch), when

only the terms of the lowest order of ! are retained, the following
Y

three equations are obtained:

n 2V,
nn

ll-u

+ n V, + 2u _ W tan a = 0 (C15a)n ,n

2
U + 11 U, + 2T1 V, sec a]

"nll n on

1
+[W,o,=.. +- ,.......2 _ n V, on] 0

(C15b)

and

4
W,

nnnn
3 7n2+6 n W, + W, +TI W,

_nT1 TIT1 rl

4

Y 1
11 [Wtan 2 a +2 v T1 V, tan a] = 0

+

n

Since

4

Y
n -.-1 as y -,-co
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the last equation becomes

4 6y3 2 2,1 W, + W, +7 _1 W, + 11W, +Wtan
T1T1T1T1 71T111 _

1
+2 V_ V, 11

tan a = 0
(ClSc)

The integration of equation (ClSa) with respect to _ results in

V, - 2 u Wtana
(el6)

in which, without loss of generality, an integration constant has been

dropped. Substitution of (C16) into e_ation (C15c) yields

4 3 2
W, +6 _ W, + 7 _ W, +_ W,

+ W tan 2 2)a (1-v = 0

(cz7)

Assuming

1 -- _, cos nvO
W - C 11

tan a sin 0 1 (C18)

equation (Ci7) results _ a characteristic .....+_

2
_k4 + (1-_ } tan 2 a = 0

(Cl?)

which gives

A = +q (1+_i) (c2oy

where

1

q =_ [ [(1- 2)tan 2 a]_- f2 [7 (c2:]_)
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Letting

V

U

-- x cos n,____8@

= B_3 sin {}1

= A ,I _ sinn_@
cos 81

(022)

and making use of equations (C16) and (C15b)

w 2_
B =

-- 4__ C=
A = _+ A2 (2+0) m

(c23)

where A, B, and _ are complex numbers. When the identity

i
_1 = cos (_n _) + i sin (_n_])

is used and the complex numbers are transformed to real numbers, one

has

,{qW = tan a n [C 5 cos (q _n_]) + C 6 sm(qt_nn)]

+ ,1-q [c 7 cos(qLnn) + C 8

cos nv O

sin (qlnn)]} sin {11

V = __
q {,]q [(C5-C 6) cos(q_n,1) + (C 5

- n -q[(c7+C8)c°s(q _nn )

+ C 6) sin (qgnrl)]

(c2_)

cos n_ O+ (C8-C7)sin(q_nn)] sin O 1

U = ¥ 2(2+2)m{_q[c 6 cos(q_n_) - C 5 sin(q_n_l)]
q

--q-q [C 8 cos(q[nn) - C 7
sin nw O

sin(_nr])]} cos 0
1
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Expressing in terms of the variable y and denoting

Yq = f (c25)

the solutions given in (Cll) and the induced stress forces and couples

obtained from (C14) assume the following final forms:

WII _ 1
tan a y?[C cos(f [ny) + C 6 sin(f fny)]

II u
= -- Y1v f

-f
*y

[C 7 cos(f 4ny) + C 8 sin(f _ny)] ) cos n_r___90
sin 81

6

II
U =

II
N = 0

s

Nil __Et II 10 - ,tan. --5
Y

(c26)

II 2Et 1
M - tan a Y2s 02 -7

Y

M:II = u M II

tl S

II
Ms8

- 2(l-u)
= +

f3 -_1 { yf C 6) cos(f _ ny)m tan a [(C5+
Y

-f
+ (C6-C5)sin(j_lny)] -y [(CT-.C8)cos(f gny)

cos nw O+ (C 8 + CT)sin(j9 gny)] sin O1
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II Et 1 1
= _ 4 Y1

Ss L tan affy

II
S o

where

= -++E___.2 (2-v)
1 1

L _-_ mtan a -4y Y2

YI = yf [(c6-c5) cos(j__ny) - (C5*C6)sinO0 _ny)]

+ y-f[(c8+c7)cos(f gny) + (C8-C7)sm(ff£_ny)]

Y2 = Y)_[C6cos(j)_ny)- C5 sin(fflny)]

-YfI C 8 cos(fl Fny) -- C 7 sin(fgny)]

A PARTICULAR SOLUTION

Consider a conical shell subjected to a lateral normal load which

is constant along the meridians and has a sinusoidal distribution in the

circumferential direction. This was the case treated in Appendix A. The

set of equations (C6) of membrane theory may be used for the particular

solution.

Let

P8 = P = 0S

cos nTr 0
p =
r Pn sin 81

(C27)

and assume

4 sin n,r 0
u p = dlY

cos O1
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4 cos n= 0 (C28)
vP = d2 Y sin 91

4 cos nw0

wP = d3 Y sin 0--_-

where _, d2, and d3 are coefficients to be determined by the substi-

tution of expressions (C27) and (C28) into equations (C6). When this

is done the results are

up = +_n-- 1 m 2] 4 sin n_ 0[11 + 2v - m y
-- Eh 12 tan a cos 91

v p - Pn L2

Eh 12 tan a
4 cos nw @

[3(1-2v) - m 2] y
sin 01

w p -

2

Pn L 1

Eh 12 tan a
(m 2_l)(m 2_9)y4 cos n_ 0

sun 81

(c29)

The corresponding stresses obtained from (CI) with k = 0 are:

N p PnL 3-m2)y 2_ ( cos. nne
s 6 tan a sm 81

Pn L 2 cos n= @
NeP -

tan a y sin 91
(c3o)

Pn L 2 sin nw 0
_ myNO = + 3 tan a cos 0

1

By retaining the solutions of the lowest order of
1
- , one finally
P

has the complete solutions for a shell subjected to the lateral load (C7)
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I = v IU = U + uP, V + VP,

w = w I + w II + wP;

N s = N I+N p N 8 = NSII+N pS 8 ' S '

Ns8 = Nes = Ts = Ns81 + Ns8 p

II II
Ms : Ms M8 : M8

= II SsIIM@s : Ms9 Ms8 • S8 =

II
S = S
s s

(c31)

NUMERICAL EXAMPLES

In what follows, two numerical examples are given. One is the en-

gine shroud discussed in Appendix A. The other is a cantilevered com-

plete cone frustum for which the numerical solutions are available in

[C_ and [C_]. Comparisons of the present solution with those given

in ICSI will be made.

Example i

The engine shroud considered is a semicircular truncated conical

shells segmenk, which has two generators simply supported with the small

end fimsd and the other end free. Thus the lower set of sinusoidal func-

tions of the solutions is used with the following boundary conditions

for the solution:

awu : v : w :_-s : 0 at y =

N s = Ts : Ms : Ss = 0 aty = 1

(c32)

The same material and geometrical constants as used in AppendixA are

used here, i.e.,
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= 1 L1
u 3' a = 75 ° and --L- = 0.90 (C33)

Numerical results for = 0.006 and n = I, 2 are computed. The re-
R

sults are given in the form

F (y, 8) = f (y) sin nw8 (C3h)
n n cos 9 n = 1 and 2

1

The functions f (y) are shown as the solid lines in Figures C1 through
n

C7. The respective functions obtained in AppendixA are also sho_min

these figures by dotted lines if there are some differences.

Example 2

In this example, a cantilevered complete cone frustum fixed at the

smaller end is considered. At the larger free end, a rigid plate is

attached and a moment, M, is applied about a horizontal axis. Thus the

solutions are symmetrical about the vertical axis through the center of

the cone. For such a complete cone, the upper set of sinusoidal func-

tions of the solutions is used with the angle @ measured from the vert-

ical line taking n = 1 and @l = _

The boundary conditions at the free end, referring to [C_ , can be

given as follows:

RI [¥s + Ss sin. - Ns cos =] = 0

IrR 1 [Ms - R1 (_ sin a +S cos a)] = -M
S S

m

u sec a +v +w tan a = 0
(c35)

= 0
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R
= and a function with a bar indicates that the functionwhere _ sin a

is of function of y only. When the asymptotic solutions are used and

the terms of the lowest order of 1 are retained, the conditions (C35)
P

become

- I _ HI cos a __0
Ns@ s

--I M 1
N -

s _R21 sin a

-I I i If)u sec_ +v +(w +w tan_ : o
aty = 1

(c36)

a_ II
= 0

8s

The other four boundary conditions at the fixed end are:

I I I II = aw = o at y =
U = V = W +W aS

The following material and geometrical constants are used:

t 1 4 LI 5
v = 0.3, - tan a =- and -

R 40' 3' L 8

(3" , (_ t

Two sets of stress ratios, 2/_lMma x and m/C_lMmax,

puted, and are given in Figure C8, where

(C37)

(c38)

were com-

N o
Or

2 t

N
_ s

O" 1

1Mmax t lmax

6M
0" - S

m h 2

(c39)

?o



C_S_GREMARKS

The asymptotic solutions obtained are relatively simple when com-
pared to other available solutions for conical shells of constant thick-

ness. The results of the first exsm_le show that the difference between

the solutions for linearly varying thickness and constant thickness is

relatively small. This indicates that the assumption that these two types

of shell will behave alike when the ratio of thickness to radius is very
small is acceptable.

The difference between the present and other available solutions

shownin the second examplemy be attributed to the relatively large

ratio of t/R which is _O" Such a shell is relatively thick for the 4

application of the asymptotic solutions. Nevertheless, the results may

still be valuable for preliminary design purposes assuming that the other

solutions are better than the present solutions. This asstm_tionj how-

ever, needs further verification which can probably be obtained by an ex-

perimental study.
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APPENDIXD

COMPUTERPROGRAMSFORCONICALSHELLS

By Han Yun Chu

The contents of this appendix were previously submitted as a part of
Progress Report No. 6 for NASA Contract NAS8-11155.
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COMPUTERPROGRAMSFORCONICALSHELLS

By Han Yun Chu*

The Univac Solid-State Fortran II language is used for the computer
programs included.

The following table showsthe relationship between the symbols used

in the computer programs and those in the equations-

In equations

In programs D(_)

Et d2
pL2

D(2)

Et bl
pL2

D(3) C(i)

pL 2

W

pL 2s

Y

pL s

Et

pL

E

Et

pL

F

E__.t
pL 8s

G

pL s,

H A

1 T
pL s

B X

TS

k p y _ m

oiTI
COMPUTER PROGRAMS

P_ RM

Ao

Computer Program I

Computer program i is for the numerical example given in Appendix

r

-_3raduate student in Engineering Mechanics, University of Alabama,

University, Alabama and Graduate Research Associate for NASA Contract NAS8-
11155. " ' ' ....
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4

7

5
6

DIMENSION D(3), C(8)

READ 1, TS, S, P, R, U

FORMAT (5E15.7)

FL1--373.312/0.96593

DB=TS] FL1

FKS=DB**2] 12.0

Q=(SQRT(2.0)] 2.0)*((16.0.(1.0-P**2)*{TAN{S))**2) [ FKSS**{ 1.0[ 4.0)

Q =ABS(Q)

PRINT 4, S, P, R, FL1, DB, FKS, Q

FORMAT (6HS = ,E15.7, ],6HP = ,E15.7, ], 6HR = ,E15.7,/,

1 6HFL1 = ,E15.7,],6HDB = ,E15.7,],6HFKS = ,E15.7,],

2 6HQ = ,E15.7,])

V =Q*LN(R)

D(1)=U/(TAN(S)*3.0)*(U**2-3.0*(5.0-P)] 2.0-3.0.(1.0+P)/ (2.0,U*,2))

D{25 =U] TAN{S)[ 3.0*{U**2 -7.0+2.0*P)

D{3) =1 .0]{6.0*TAN(S))*(3.0*(1.0-2.0*PS-U**25

C(1) =(U**2 -1.0)] TAN(S)*(-D( 3)*R*,2 -((1.0+P5*D(35- U*P*(D(1)-D(2))+

1(1.0-P)] 4.0*U*(D(2)+2.0*U,D(3)))/(( 1.0-P**2)*R**2)+U*(D(2)+2.0*U*

2D(3))] (8.0,(1.0+P)*R**4))

C(2) =(U**2 -2.0.(1.0 -P)51 (2.0.( 1.0-P**2)*TAN(S))*((1.0+P)*D{ 3) -U *P

i*(D( 15-D(2) 5+(1.0 -P) *U *(D( 25+2.0*U *D(3) )[4.0)

C(3) =U/TAN(S)*((U*D(3)-D(1)-D(2)*LN(R))+U ](2.0.(i. 0-P**2)*R**4)

1*((1.0+P)*D(3) -U *P*(D(I) -D(2))+(I. 0-P)] 4.0*U*(D(2)+2.0*U'D(3)))

2 -(D(2)+2.0*U'D(3))/(12.0"(I. 0+P)*R**6)*(U**2+2.0"(i. 0+P)))

C(4) = -(U*(D(25+2.0*U*D(3))*(U **2 -7.0+2.0*P))] (24.0"(1.0+P)*TAN(S))

CT =(R**Q*(3.0*COS(V) -SIN(V))+R**(-Q)*(COS(V)-SIN(V))) /(R**Q*(- COS(

1V)+SIN(V))+R**(-Q)*(COS(V)+SIN(V)))

C(6) = -(C(1)*R+C(2) ] R+C(3)*R*'3+C(4) ] R**3+U ] TAN(S)*D(2)*(1.0+LN(R))

1 *R*'35 ] (R**Q*( (2.0+CT)*COS(V)+SIN{V)5+R**( -Q5 *(CT*COS{VS+SIN(V)))

C(55 =(2.0+CT)*C(6)

C(7) =CT*C(6)

c(8)=c(6)

PRINT 7, (J, C(J), J=l, 85

FORMAT (2HC(, I2, 4H) = , E15.7, ]5

READ 6, T

FORMAT (El5.7)

W=(C( I)+C(25 ]T*'2+C(35 *T*.2+C(4) ]T**4+U ]TAN(S)*D(25*( I. 0+LN(T) )*T *

i*2+T**( -I)*(T**Q*(C(5)*COS(Q*LN(T ))+C(6)*SIN(Q*LN(T )))+T**(-Q) *(C{

2 7 )*COS(Q*LN(T))+C(8)*SIN(Q*LN(T)))))

Y=(2. O] Q**2*T*(T**Q*(C(6)*COS(Q*LN(T))-C(5)*SIN(Q*LN(T)5)+T**(-Q)

1 *(-C_ 8)* COS(Q*LN(T))+C( 7)*SIN(Q*LN(T)))))*(T AN(S))**2

Z=(1.0[ (Q*T)*(T**Q*(( -C(5)+C(6))*COS(Q*LN(T) )+(-C(55 -C(6)5
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DATA

0 40

0 40

0 60

0 60

0 80

0 80

0.900

0.902

I*SIN(Q*LN(T) ))+T**(-Q) ¢-((C(7)+C(8))*COS(Q*LN(T ))+(-C(7)+C(8) )

2$SIN(Q_LN(T)))))*(TAN(S))**2

E =U STAN(S) _(C( 1)/(U _2 -1.0)+C(2) /((U _'2 -2.0 _,(1.0 -P))*T *$2)+C(3)

IVT _-_2/U $.2+((U _2 -4.05(1.0+P))vC(4))/(U$_2 $(U _,_,2-7.0+2.0*P) $T*.4))

2+(D(1)+D(2) _LN(T))-_T _.2

F=TAN(S)*( C(1)/(U-_-_2-1.0)+(2.0-_C(2))/(U$_2-2.0,(1. O=P))

I*T $$(-2)+3.0.C(4) /((U _-_2-7.0+2.0*P) ST*_4))+D(3) ST $$2

G=Q/(2.0*T _3)-_(T_((C(5)+C(6))_COS(Q_LN(T))+(-C(5)+C(6))

I_SIN(Q_LN(T)) )+T _(-Q) _((-C(7)+C(8 ))_COS(Q*LN(T))

2+(-C(7) -C(8) )*SIN(Q*LN(T ))))

H-- -2.0*TAN(S)*(C(2) /((U _.2 -2.0.( I.0-P))*T **2)+3.0.C(4) /((U*:_2-7.0+

12.0_P) _T-_4) )+T _2 /(i. 0- P::,-_2)_((i.0+P)_D(3)-U_P_(D(I) -D(2)))

A=I. 0/(1.0-P-_$2)_,(D(3)*(1.0+P) -U*(D(1) -D(2)) )*T $$2

I+T**( -1)*(T **Q*(C(5)*COS(Q*LN(T))+C(6)*SIN(Q*LN(T)))

2+T $*(-Q)-_(C(7) _COS(Q_LN(T))+C(8 )*SIN(Q*LN(T))))VTAN(S)

B =((6.0 :_TAN(S)-_C(4) )/(U -_(U*.2 -7.0+2.0*P) *T *.4)

1+((D(2)+2.0*U ;_D(3))-_T:_:_2)/(4.0;*(1.0+P)))

X =2.0 ;_U$(2.0 -P) /(Q:_:I_2:._T):_(T:_*Q*(C(6) •COS(Q_LN(T)) -C(5) _SIN(Q::-"

1LN(T)))+T:_*I -Q) _,(-C(8):_COS(Q.LN(T))+C(7).SIN(Q:_LN(T))))

2-_(TAN(S))*_2

PRINT 8, W, TS, Y, Z, E, F, U, G, H, A, B, T, X
FORMAT

1

2

3

4

GO TO 5

END

CARDS:

(4HW = , E19.7, 15X, 4HTS = , E15.7, /, 4HY = , E19.7,/,

4HZ = ,E19.7, /, 4HE = , E19.7, /, 4HF = , E19.7, 15X,

4HU = ,E15.7,/, 4HG = ,E19.7,/,4HH = ,E19.7,/,

4HA = ,E19.7, /, 4HB = ,E19.7, 15x, 4HT = ,E15.7, /,
4HX = ,E19.7,3/)

309 0.33 0.90 3

309 0.33 0.90 7

309 0.33 0.90 3

309 0.33 0.90 7

309 0.33 0.90 3

309 0.33 0.90 7

86

72

86

72

86

72

PRINT 7, (J, C(J), J=l, 8)

FORMAT (2HC(, I2, 4H) = , E15.7, ])

READ 6, T

FORMAT (El5.7)

W=(C(1)+C(2)/T**2+C(3)*T**2+C(4) / T**4+U / TAN(S)*D(2)*( 1.0+LN(T))*T¢

1 *2+T **( - 1 ) *(T **Q*( C( 5 ) *COS(Q*LN(T ))+C(6 ) *SIN(Q*LN(T )) )+T *_-(-Q) -'.'-"(C(

2 7 ) * COS(Q*LN(T))+C(8) *SIN(Q*LN(T )))))

Y=(2.0/Q**2*T*(T**Q*(C(6)*COS(Q*LN(T))- C(5)*SIN(Q*LN(T)))+T**(-Q)
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8

1*(-C(8 )*COS(Q*LN(T ))+C( 7)*SIN(Q_LN(T )))))*(TAN(S) )**9.

Z=( I. 0/(Q*T)*(T*_*((-C(5)+C(6)) _COS(Q*LN(T))+(-C(5) -C(6))

I*SIN(Q*LN(T)))+T _*(-Q)*((C(7)+C(8))*COS(Q*LN(T))+(-C(7)+C(8))

2*SIN(Q*LN(T)))))*(TAN(S))**2

E =U*TAN(S)*(C(1) /(U_*2 -I. 0)+C(2) /((U**2 -2.0"(I. 0-P))*T _2)+C(3)

I*T _2/U**2+((U**2 -4.0#;(I.0+P))_C(4))/(U**2*(U**2 -7.0+2.0*P)*T*_4))

2+(D(1)+D(2)*LN(T))*T**2

F=TAN(S)*(C(1)/(U**2-1.0)+(2.0_C(2))/(U**2 -2.0"(I. 0=P))

l_vr**( -2)+3. o*c(4) /((u**2 -7.0+2. o#;P)_T**4))+D(3)*T**2

G=Q/(2.0*T**3)*(T**Q*((C(5)+C(6))*COS(Q*LN(T))+(-C(5)+C(6))

1*SIN(Q*LN(T)))+T _*( -Q)*(( -C(7)+C(8))*COS(Q*LN(T))

2+(-C(7)-C(8))*SIN(Q*LN(T))))

H =-2.0*TAN(S)*(C(2) /((U**2 -2.0.(1.0-P))*T**2)+3.0.C(4) /((U**2-7.0+

12.0*P)*T**4))+T**2 /(1.0-P*_2)*((1.0+P)*D(3)-U*P*(D(1)-D(2)))

A =I. 0/( 1.0 -P**2) *(D(3) *(1.0+P) -U*(D(1) -D(2))) _r **2

I+T**( -I)*(T*_Q*(C(5)*COS(Q*LN(T))+C(6)*SIN(Q*LN(T)))

2+T**(-Q)*(C(7)*COS(Q_LN(T))+C(8)*SIN(Q*LN(T))))*TAN(S)

B=((6.0*TAN(S)*C(4) )/(U _(U **2 -7.0+2.0 _P)*T**4)

I+((D(2)+2.0*U*D(3))*T**2) /(4.0_(1.0+P)))

X=2.0.U*(2.0-P)/(Q_2 *T)*(T _Q*(C(6)*COS(Q*LN(T)) -C(5)*SIN(Q_

ILN(T)))+T**(-Q)*(-C(8)*COS(Q*LN(T))+C(7)_SIN(Q.LN(T))))

2_(TAN(S))**2

PRINT 8, W, TS, Y, Z, E, F, U, G, H, A, B, T, X

FORMAT (4HW = ,E19.7, 15X, 4HTS = ,E15.7,/, 4HY = ,E19.7,/,

1

2

3

4

GO TO 5

END

DATA CARDS:

0.40

0.40

0.60

0.60

0.80

0.80

4HZ = , E19.7,/, 4HE

4HU = , E15.7,/, 4HG

4HA = , E19.7,/, 4HB

4HX = ,E19.7, 3/)

= , El9.7,/, 4HF = , E19.7, 15X,

= , E19.7,/, 4HH = , E19.7,/,

= ,E19.7,15x, 4HT = ,E15.7,/,

1.309 0.33 0.90 3.86

1.309 0.33 0.90 7.72

1.309 0.33 0.90 3.86

1.309 0.33 0.90 7.72

1.309 0.33 0.90 3.86

1.309 0.33 0.90 7.72

0.900

0.902

0.912

0.916

0.940

0.950

I .000
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Computer Program 2

Bo

Computer program 2 is for the numerical example given in Appendix

The same program as Computer Program 1 is used except cards

D(1), D(2) and D(3) are replaced by the following cards

re spe ctively.

D(1) =U/(6.0,( 1.0 -P))*(3.0.( 1.0+3.0*P} -3.0*(5.0 - P)*TAN(S)

1 -(2.0*U**2 -3.0.( 1.0+P)/U**2)*(1.0-TAN(S)))

D(2) =U/(3.0,(1.0-P}}*((1.0+4.0*P-U**2) -TAN(S}*(7.0-2.0*P-U**2))

D(3) =U**2/(6.0.(1.0-P) )*( 1.0 -TAN(S)+3.0/U**2*((1.0-2.0*P)

1 *TAN(S)+ 1.0))

Computer Program 3

Computer Program 3 is for the first numerical example given in Ap-

pendix C.

DIMENSION D(3), C(8)

READ 1, TS, S,P,R

FORMAT (4E15.7)

FL1=373.312/0.96593

Q=(48.0.(1.0-P**2))**(0.25)*(FLl*TAN(S)/TS)**(0.5)

Q=ABS(Q)

PRINT 2, TS, S, P, R, FL1, Q

FORMAT (6HTS =, E15.7,/, 6HS =, E15.7, /, 6HP =, El5.7,

1/,6HR =,E15.7,/,6HFL1 =,E15.7,/,6HQ =,E15.7,3/)

V=Q*LN(R)

BT=12.0*TAN(S)

RE AD 4, T

FORMAT (E15.7)

DO 5, UR=1.0,2.0,1.0
U=3.86*UR

D( 1 ) = -U *( 11.0+2.0*P-U *.2) / BT

D(2)=(3.0,(1.0-2.0*P)-U**2)/BT

D(3)=(U**2-1.0)*(U*,2-9.0)/BT

C(4) =2.0*U**2*(U**2 -4.0)/BT

C(2) =12 .0*((U**2-1.0)*,2)/ BT

C( 1 ) =((U **2 -P}/(2.0*(U ;_,2 - 1.0)) - LN(R))*C(2 ) -(U **2 - 1.0)

1 _'_(2.0,C(4 ) / (R**2 *(U **2 -4.0) )+D(2) *R**4)

C(3) = -U ;_D( 1 ) *R**2 -(U **2 - 2.0 - 2.0*P)*C(4 ) / (R**4 *(U ;:-";_2 -4.0) )

1 -U ;_,2 / (R_: :.2 *(U _'_.2 - 1.0) )*( C( 1 ) -( ( 1.0 -P)/( 2.0*(U *;:'-2- 1.0) )

2 -LN(R))_:_C(2))

CK =(R**Q*(3.0* COS(V)-SIN(V) )+R**(-Q)*(COS(V)-SIN(V)))

u.9



6

1 / (R**Q*( - COS(V)+SIN(V) )+R**(-Q) *(CK* COS(V)+SIN(V )))

C(6) =-(C(1)+C(2)*LN(R)+C(3)*R**2+C(4)*R**(-2)+D(3),R**4)

1/(R_*Q*((CK+2.0)*COS(V)+SIN(V))+R**(-Q)*(CK*COS(V)+SIN(V)))
C(7) =CK*C(6)

C(5)=C(7)+2.0.C(6)

C(8) =C(6)

VT=Q*LN(T)

W=I. 0/TAN(S)*(C(1)+C(2)*LN(T)+C(3)*T**2+C(4)*T**(-2)+D(3),T**4

1 +T**Q*(C(5)*COS(VT)+C(6)*SIN(VT))+T**( -Q)*
2 ( C( 7 ) * COS( VT )+C( 8 )*SIN(VT )))

Y=2.0*TAN(S) / (Q**2 *T **4) *(T **Q*(C(6) * COS (VT) - C( 5 )*S IN(VT ))

1+T **(-Q) *( - C(8) *COS( VT )+C (7) *SIN(VT )))

Z =TAN(S) / (Q*T**4)*(T**Q_((C(6)-C(5))*COS(VT)-(C(5)+C(6)),SIN(\T __

I+T **(-Q) *(( C(8)+C(7)) * COS(VT ) -(C(7) -C(8) )*S IN(VT )))

E =1.0/U *(U**2 / (U**2 -1.0)*(C(1)-((1.0-P)/(2.0*(U**2 -1.0))

1 -LN(T))*C(2))+C(3)*T**2+(U**2 -2.0-2.0*P)*C(4)
2 / (T**2*(U**2 -4.0)))+D(1)*T**4

F=I, 0/(U**2-1.0)*(C(1) -((U**2 -P)/(2.0*(U**2 - 1.0)) -LN(T))*C(2))

1+2.0"C(4)/(T**2*(U**2 -4.0))+D(2)*T**4

G=Q/(2.0*TAN(S)*T**2) *(T**Q*((C(5)+C(6))*COS(VT)

1+(C(6) -C(5))*SIN(VT))-T**( -Q)*((C(7) -C(8))*COS(VT)

2+(C(8)+C(7))*SIN(VT)))

H=C( 2)/(2.0*(U**2 -1.0) *T**2) -2.0.C(4) /((U **2 -4.0) *T **4)

I+T **2/( I. 0-P**2) *((2.0+P)*D(2) -P*U*D(1)+P,D(3))

A =T**2/(I. 0-P*,2)*((2.0*P+I. 0)*D(2)-U'D( 1)+D(3))+1.0/T**2

i*(T**Q*(C(5)*COS(VT)+C(6)*SIN(VT))+T**(-Q),

2(C(7)*COS(VT)+C(8)*SIN(VT)))

B=2.0.C(4)/(U*(U** 2 -4.0)*T**4)+T**2 /(2.0.(1.0+P))
I*(D(1)+U*D(2))

X=2 .0*TAN(S)*(2 .0-P)*U/ (Q**2*T**4)*(T**Q*( C(6)*COS(VT)

1-C(5)*SIN(VT))+T**(-Q) *(-C(8)*COS(VT)+ C(7)*SIN(VT)))

PRINT 6,W, T, Y, Z, E, F, U, G, H, A, B, X

FORMAT (5HW = ,E19.7, 15X, 4HT = ,E15.7,/,5H Y = ,E19.7,/,

15H Z =,E19.7,/,5HE = ,E19.7,/,5H F =,E19.7,15X,

24HU = , E15.7,/, 5H G = , E19.7,/, 5H H = , E19.7,/,

35HA = ,E19.7,/,5H B =,E19.7,/,5HX =,E19.7,3/)
5 CONTINUE

GO TO 3

END

DATA CARDS:
0.6

0.9O0

0.902

0.912

0.916

1.309 0.333 0.90



0.940
0.950

• 1.000

7

5

6

St

Computer Program

Computer Program h is for the second numerical example in Appendix

DIMENSION C(8)

READ 1, TS, S, P, R

FORMAT (4E15.7)

FL1=13.333

PI=3. 1416

BJ =1.0[ (PI*(COS(S)) **2*SIN(S))

Q=ABS((48.0.( 1.0 -P**2))**(0.25)*(FLI*TAN(S) / TS) **(0.5))

U=I.0/COS(S)

PRINT 4, TS, S, P, Q, R, U

FORMAT (6HTS =,E15.7,/,6HS =,E15.7,/,6HP = ,E15.7,/,

16H Q = ,E15.7,/,6H R = ,E15.7,/,6HU = ,E15.7,3/)

V=Q*LN(R)

C(1)=(U*'2-1.0)*BJ/R**2

C(2) :0

C(3)= -B J*(1.0+P+U**2 /2.0)/R**4

C(4) = -(U*.2-4.0)*B J/2.0

DET =(R**Q-R**( -Q))**2-4.0*(SIN(V))**2

BET =C(1)+C(2)*LN(R)+C(3)*B**2+C(4) / R**2

C(5) = - 1.0/DET *(BET *(R**Q*(COS(V)+SIN(V) ) -R :'.::!=(-Q) :::( COS(V) - S IN( _,: )

1+P,B J*(1.0-R**(-2.0*Q)+2.0*(SIN(V))**2+SIN(2.0*V)))

C(6) =I. O/DET*(BET*((R**Q-R**(-Q))*COS(V) -(R**Q-3.0*R**(-Q)) _'.,

ISIN(V))+P*BJ*(SIN(2.0*V)+COS(2.0*V)-R**(-2.0*Q)))

C(7) =P*BJ -C(5)

C(8) =P,B J-2.0.C(5) -C(6)

PRINT 7, (J, C(J), J=l, 8)

FORMAT (2HC(, I2, 4H) = , E15.7,/)

READ 6, XC

FORMAT (E15.7)

T =SQRT((5.0*XC+8. 333)/13. 333)

VT =Q*LN(T)

HM = -2.0.C(4) / (R**4*(U**2 -4.0))

A =1.0 / T * * 2 *( T **Q*( C( 5 ) * COS (VT )+ C(6) *S IN( VT ) )

I+T**(-Q)*(C(7)*COS(VT)+C(8)*SIN(VT)))

Y=2.0*TAN(S)/(Q**2*T**4)*(T**Q*(C(6)*COS(VT)-C(5)*SIN(VT))

1 -T **(-Q) *( C( 8 ) *COS( VT ) - C(7) *SIN( VT ) ))

RM=6.0*Y*FL 1/(TS*HM)
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9

RN=A/HM

PRINT 9, HM, T, Y, A, RM, XC, RN

FORMAT (4HHM = ,E15.7, 15X, 4HT =,E15.7,/,4HY = ,E15.7, /,

14HA = , E15.7, /, 4HRM =, E15.7, 15X, 4HXC =, El5.7, /, 4HRN =, El5.7. 3/)
GO TO 5

END

DATA CARDS

0.2

0.00

0.02

0.20

0.25

1.00

0.927 0.3 0.7900
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INTERNAL PRESSURE AND A_AL COMPRESSION

By Thomas A. Carlton, Jr. and Gustavo A. Aramayo

The contents of this appendix were previously submitted as Progress Re-
port No. 3 for NASA Contract NAS8-11155.
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APPENDIXE

STABILITYOFSMALLPLASTICCYLINDERSSUBJECTEDTO

INTERNALPRESSUREANDAXIAL COMPRESSION

By ThomasA. Carlton, Jr.* and Custavo A. Aramayo_x-

INTRODUCTION

The development of theoretical criteria for the buckling of mono-

coque and stiffened thin shell flight structures has taken place at a

rapid pace under the impetus of the space program. The experimental

verification of these criteria has madeonly limited progress. The

reasons for the gap which has developed between theory and experimental

verification are numerous. The use of high speed computers has made

possible the rapid solution of complex shell stability equations. Thus,
it has been possible to generate theoretical design data at a muchfast-

er rate than it can be experimentally verified.

Unfortunately, the idealized conditions assumedin the theoreti-

cal solutions are not realized in either model or prototype shell. In

order to determine if the lack of ideal conditions in a physical model

imposes a_severe limitation on the use of totally theoretical design

methods, an extensive experimental investigation must be undertaken.

In those cases where a particular structural configuration has been

dictated by space and service requirements, both model and prototype have

been constructed and tested so as to establish the practical limitations

of that structure. The information gained is usually limited to the

particular structure being studied and is not readily extrapolated to
the general analysis of such structures.

It would be desirable to undertake a comprehensive emperimental

program to provide the necessary confidence in theoretical design cri-

teria so that, at most, only limited non-destructive prototype testing
I, , i, , , |

*Prefessor of Civil Engineering, University of Alabama, University,
Alabama and Staff Associate for NASA Contract NAS8-11155.

-×_,_raduate Student in Engineering Mechanics, University of Alabama,
University, Alabama and Graduate Research Associate for NASA Contract NAS8-
11155.



would be indicated. The practicability of such a program is dependent

on being able to provide a large number of suitable models at a reason-

able cost. Therein lies the primary objective of this study: to determ-

ine if suitable models for experimental shell stability studies can be

inexpensively fabracated from commercially available sheets of cellulose

acetate.

Under the terms of Contract NASS-11155, an experimental study was

conducted to determine the suitability of cylindrical shells fabricated

from flat sheets of cellulose acetate for verifying theories of shell

stability. The unstiffened plastic cylinders were subjected to various

combinations of axial compressive load and internal pressure. A total

of thirty-two cylinders were fabricated. However, data were collected

for only twenty-three cylinders. The remaining cylinders were either

destroyed during installation in the testing machine or had initial im-

perfections that made them unsuitable for testing.

It was initially proposed to conduct tests using cylinders of var-

ious L/D and r/t ratios. However, the actual test program was limited

to one value of L/D and three values of r/t. Limitations on the r/t

ratio were due mainly to the difficulties encountered in the installa-

tion of the cylinders into the loading device.

TEST SPECIMENS

The cylindrical shell models were prepared from flat cellulose ace-

tate sheets measuring 20 inches by 50 inches. Thicknesses used were

0.0075, O.O10, and 0.0]5 inches. These sheets were cut tocform the pro-

jection of the external wall of the cylinders and a longitudinal seam

was formed by making a lap joint and gluing with Fibestos cement. De-

pending upon the wall thickness of the cylinder, two different overlaps

were used for'the longitudinal seam. A 1/8 inch overlap was used for

the cylinders of the O.O10 and 0.015 inch wall thickness and a 1/h inch

overlap was used for the cylinders having a wall thickness of 0.0075

inches. An attempt was made to fabricate cylinders with a wall thick-

ness of 0.005 inches, but inability to fabricate suitable models pre-

cluded the continuation of this effort.

The basic dimensions of the cylinders were: Length 20 inches,
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average diameter 15 inches, and wall thicknesses of 0.0075, O.OlO, and

0.015 inches resulting in radius-to-thickness ratios of lO00, 750, and

500 respectively. Wall thickness had a variation of + 0.0002 inches as

determined with a dial indicator reading to the nearest O.O001inches as

shownin Figure El. The diameter of the cylinders waswithin 0.05 per
cent of the nominal mid-wall dimension of 15 inches. The diameter of

each cylinder was determined by measuring the circumferential length and

seamoverlap prior to fabrication.

Couponsfrom each test cylinder were obtained in an attempt to deter-

mine the material properties of the individual specimen. At least two

flat coupons 1 inch wide and having various gage lengths were cut from

each flat sheet and tested in tension. Due to slippage of the coupons in

the grips and, perhaps, other factors, the results of the tension tests

of coupons from the same sheet exhibited large variations and were of

little value in determining the tensile modulus of elasticity and Poisson' s

ratio. No attempt was made to determine the compressive modulus of elas-

ticity of the flat coupons since compressive tests of the coupons would

have required lamination of several coupons or some other device to pre-

vent buckling that would have introduced additional unknowns.

In a further attempt to determine the material properties, data

collected in the testing of the individual cylinders were analyzed. From

the test of a cylinder at zero internal pressure, the modulus of elas-

ticity in compression can be computed from the load-deformation curve and

the dimensions of the ....... _--cy±_lu_. _, _ _ ......_+_l_____deformation...... of the

unstrained cylinder is totally restrained when the internal pressure is

applied, i.e., m = O, it is possible to compute Poisson's ratio. When
Y

the cylinder is clamped to the loading head, the difference between the

internal pressure force on the loading head and the load required to pre-

vent vertical deformation in the cylinder is used to compute the longi-

tudinal tensile stress, ay, in the cylinder wall. The hoop stress, _x'

is equal to p(r/t). Thus, Poisson's ratio, _, is _x. However,

measured forces indicated that slipping occurred between the cylinder and

the loading head in every test, thus, partially relieving the induced
Y

stress. For this reason, it was necessary to disregard experimentally

determined values of Poisson's ratio and use an assumed value of 0.3.
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Furthermore, analysis of the test cylinder data showed that slippage oc-

curred between the cylinders and supports. Since the displacement mea-

surements made during the tests were obtained by measuring the relative

displacement of the heads of the testing machine and the amount of slip-

page was indeterminate, this data could not be used to determine the com-

pressive modulus of elasticity.

The experimentally determined values of the modulus of elasticity

were all considerably less than the manufacturers specified value of

400,000 psi. However, because of the scatter in the test results and

the unknown uncertainities in the tests conducted to determine the modu-

lus of elasticity, the manufacturers nominal value of 400,000 psi was

used in the analysis of the stability tests. Although it seems reasonable

to assume that there are only small variations in the modulus of elas,

ticity from sheet to sheet, it is possible that some of the scatter ob-

served in the tests of the cylinders was due to variations in the com-

pressive modulus of elasticity.

EQUIPMENT AND PRECEDURES

An Instron universal testing machine was used for applying the load

and measuring the load and displacement as shown in Figures E2 and E3.

The displacement measured was the total movement of the machine platen and

therefore included any slipping between the loading head and the test

cylinder. The load was transferred to the cylinders by means of end

loading plates. The plates were designed to fit into the test cylinder

a distance of one inch. The lower plate was fastened to the movable head

of the machine and the upper plate was fastened to a load cell. The cyl-

inders were installed in the loading rig by sliding the ends of the spec-

imen over the loading plates and then cla_ping to the loading plates with

a metal strap one-half inch wide. Thus, the load was transferred through

the cla_ps into the cylinder. The clamps also helped seal any pressure

leaks resulting from a lack of fit between the cylinder and the loading

plates.

Internal pressure was provided from an air supply at 150 p.s.i. The

air passed through a pressure regulator and a relief valve before going

into the cylinder. A constant pressure was maintained during each test
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by allowing a regulated amount of air to escape from the cylinder. In-

ternal pressure was measuredby meansof a manometerreading in inches

of mercury. Load versus displacement was obtained from an X - Y re-

corder with an electric strain gage load cell providing the load input
and a resistance potentiometer providing machine crosshead movementas

the displacement input.

Thel cylinder specimenswere deformed at a constant rate. In order

to determine the effect of rate of loading on the critical buckling load,

two different rates were investigated. These rates were 0.005 and 0.05

inches/minute displacement of the crosshead of the loading machine. At

low values of internal pressure, the buckling load resulting from the

high rate of deformation was about 3 per cent higher than the buckling

load obtained using the lower rate. However, at values of internal pres-

sure of 1.5 p.s.i, and higher, no difference in the buckling loads was

found at the two different rates of deformation. The data collected repl-

resent values of buckling corresponding to the slow rate of loading.

The load-deformation curve for the test cylinders was essentially

linear over most of the range. However, near the maximumload, a sharp

but smooth transition into a horizontal plateau of constant load and in-

creasing deformation occurred. Critical buckling load was determined
from this horizontal plateau of the load-deformation curve.

In somecases, the formation of isolated diamond-shapedbuckles oc-

curred prior to any indication of buckling in the load-deformation curve.
The load at which this occurred was not recorded since the critical buck-

ling load was found to be only slightly higher. The formation of buckles
in the unpressurized cylinders was predominant around the seamin regions

that showedsomeinitial imperfections. At higher loads, the buckles

showeda more uniform distribution and they were always more numerousin

areas having such initial i_perfections as dents and ripples.

In the pressurized cylinder tests, the internal pressure eliminated

most of the visible evidence of imperfections in the cylinders. In the

pressurized tests, the formation of the diamond-shapedbuckles waspre-
ceded by the formation of a uniform circumferential ripple at top and

bottom of the specimen. At the critical buckling load established by

the load-deformation curve, somediamond shapebuckles appeared in the
sameregions and progressed in the circumferential direction. These
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buckles, in contrast with the ones formed in unpressurized tests, had
their maximumdimension in the circumferential direction. Circumferen-

tial tension in cylinders subjected to axial co_ression tends to sup,
press the formation of diamond shapedbuckles. Furthermore, the intro-

duction of internal pressure into a cylinder increases the circumferen-

tial tension and, if the external pressure exceeds a certain limit, dia-

mondshapedbuckles are suppressed and the axisymmetric modeprevails.

However, the presence of initial imperfections tends to suppress the axi-

symmetric buckle. In the tests conducted, the initial imperfections cou-

pled with the low values of internal pressure produced diamond shaped

buckles rather than axisym_etric buckles.

The tests were conducted by first applying the internal pressure to

the cylinder while preventing any movementof the testing machine platen.

The restraining force was recorded. The axial compressive load was then

applied to the cylinder while the internal pressure remained constant.

Each cylinder was subjected to a series of tests in which the internal

pressure was varied from test to test and in which the cylinder was ul-

timately destroyed. After a cylinder was buckled at one value of intern-

al pressure, the load and pressure were relieved, the pressure was in-

creased by 1/2 psi and the cylinder was again loaded to the critical

buckling load at the increased internal pressure. This procedure was es-

tablished after one cylinder was first buckled several times with zero

internal pressure and then loaded until buckling with internal pressures

of l, 2, 3 and 4 psi. Finally, this samecylinder was again buckled at

zero internal pressure and no significant change in the buckling strength

determined in the first test was observed. This procedure was repeated

with other cylinders and the uniformity of test results indicated no ef-

fect on the mechanical properties due to repeated testing. These tests

showed that the samecylinder could be used several times provided that

the deformation was stopped as soon as the critical buckling load was
reached.

The wave length of the buckles were not measuredbecause this was

not considered important in achieving the study objectives. Since the

criterion of failure of the cylinders was a plateau in the load-displace-

ment cur_e, the load was released as soon as a plateau was observed in

the load displacement curve. This procedure permitted an individual
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cylinder to be tested manytimes. However, in manyof the tests only an
incomplete system of buckles had formed when this criterion was observed.

Therefore, the test procedure used would have required modification to

permit measurementof the wave lengths of the buckles.

THEORETICALBUCKLINGCRITERION

A summaryof the theoretical buckling criteria for pressurized and

unpressurized monocoquethin shells is presented by Harris, Suer, Skene,
and Benjamin _ *. Critical buckling stress for the unpressurized cyl-

inder based on Donnell's _2_ equations is given in terms of a buckling

coefficient, K . For the case of unpressurized long cylinders, thisc

theoretical buckling coefficient becomes

(El)

The equation for critical stress is

Gcr = KjI 2 D(_)2
D

(E2)

Substitution of the buckling coefficient into the critical stress equa-
tion _o_11_ _ _bo e_11_.._g e_ation for critical stress

n (I - v2)
(E3)

where D = I for the case of elastic buckling.

For a cylinder subjected to a combination of axial load and internal

pressure, the critical stress and internal pressure are expressed in terms

of the following non-dimensionalparameters:

= c--!-r (FA)
cr E

*Numbers in brackets designate references at the end of this appendix.
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where %r is the stress in the cylinder at buckling.

Lo, Crate, and Schwartz _3_ indicate that this stress is equal to

the stress in the cylinder corresponding to the load in the cylinder at

the time of local buckling in any particular region of the shell. Thus,

from these parameters and in accordance with r.o.s analysis, the value of

a-cr increases from 0.376 for p - 0 to a maximum of 0.605 for p - 0.169.

The Flugge theory [E4] indicates that the value of S is equal to 0.605
cr

for all values of _.

Following Lo's analysis, another non-dimensional parameter,

m i l

A%r " %r - %re

can be determined. The only new term is _ro' the non-dimensional stress

corresponding to a condition of zero internal pressure. The definition of

the stress term is the same as the one indicated for the non-dlmensional

buckling stress. Test results can be interpreted as a per cent of the

theoretical buoMling stress co_uted by equation (E3). Both the theoret-

ical and experimental buckling stress and the internal pressures are sub-

stituted into equations (E4) and (ES) for co.arisen purposes.

In _he a.-_J_vsisof +._ -_-=--_--_ _I_._.. -q_,,at_..(El) is re-

written in the following form

is as .t'ollows_where the value of Z

also, equation (_.4) Io rewrltten in the _oll_rinB _o_,l_n

%r P.9)
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EXPERIMENTAL DATA

The results of the experimental study are presented in Tables El,

EII, EIII, and EIV. For ease in analysis, these data are further sum-

marized in graphical form. The experimental data have been substituted

into equations E4 and E5 and the results plotted in Figures E4, E5, and

E6. Each of these figures presents the data for a particular value of

r/t. The variation in sheet thickness was not accounted for in these

figures since it was a random variation over each sheet rather than a

variation of thickness between cylinders. The critical buckling stress,

acr , was computed as the net buckling load divided by the cross-sectional

area of the cylinder wall. The net buckling load is the total load on

the cylinder at buckling minus the internal pressure reaction load,

p(Nr2)° Each of the above figures contains all of the satisfactory ex-

perimental values of _ vs _ for a particular r/t ratio. In addi-
ct

tion, the values of _ have been averaged for each value of p and a
cr

curve sketched for these average values of _cr" The theoretical rela-

to Lo _3] is also shown on each of these figures. Ittionship according

should be noted that the experimental data more closely _pproximates the

theory for the highest r/t ratio of lO00. The average values, taken from

Figures E4, E5, and E6, have been summarized in Figure E7 for comparison

purposes.

The data of Tables EI, EII, and EIII have also been substituted in-

to equation E6 and the results plotted in Figures E8, E9, and ElO. Aver-

age values from these graphs are summarized in Figure Ell. These figures

emphasize the stabilizing influence of internal pressure. Lo, Crate, and

Schwartz [E3] have suggested that better correlation between theory and
m

experiment can be obtained if the increment in buckling parameter, _cr'

is plotted against the pressure parameter, p.

The experimental data for the unpressurized cylinders are presented

in Figure El2 as a plot of the stress parameter, _cr' versus the r/t

ratio. A best fit curve for these data was determined by the method of

least squares. The equation for this curve is as follows:
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= 0.209 - 0.00003 r (El0)
cr t

Using equation El0, for r/t ratios of 500, 750, and lO00, values of
cr

were computed respectively as 0.194, 0.186, and 0.179. It follows then,

from equation E9, that, for the unpressurized cylinders, the best fit ex-

perimental values of the critical buckling stress, acr , are respectively

155.00, 99.20, and 71.60 p.s.i. Equation E2 was solved for the buckling

coefficient, Kc, for the case of elastic buckling and the materials and

geometry used in this study. The values of the buckling coefficient, Kc,

are respectively (4.438)(acr) , (9.9855)(Gcr) , and (17.752)(Gcr) for r/t

ratios of 500, 750, and lO00. Using the values of critical buckling stress,

acr , computed above, the experimental buckling coefficients, Kc, become

respectively 687.89, 990.56, and 1271.04. The values of Z computed from

equation E8 are 3060, 4591, and 6120 for wall thicknesses of 0.015, O.O10,

and 0.0075, respectively.

The values of experimental Kc and Z computed above have been

plotted on log-log paper in Figure El3 after the manner of Harris, Suer,

Skene, and Benjamin _l_. Superimposed on this plot are the theoretical

and the 90 per cent probability curves taken from the same reference.

ANALYSIS OF RESULTS

The fabrication of the test cylinders from flat sheets of plastic

was performed in a relatively unsophistocated manner. The sheets were

hand trimmed and the longitudinal joint was formed on a flat table so

that, at this point, the specimen looked more like a flat envelope than

a cylinder. Although several different adhesives and techniques were in-

vestigated, the material tended to wrinkle along the seam resulting in a

joint in which small local imperfections were readily noticeable. Unfor-

tunately, it is not possible to represent the quality of the specimen in

terms of initial local imprefections. However, it must be assumed that

all had some local imperfections.

In view of the above observations on local imperfections, several

interesting observations can be made from Figures E4, E5, and E6. It can
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be observed that, for all three r/t ratios represented in these figures,

the curve for the average values tends to flatten out and becomeparallel

to the theoretical curve of Lo as _ increases. Since the samecylinders

were used in most cases for the full range of _, it appears that the

effect of local imperfections is less at high pressures. This is slight-

ly misleading since many of the highly imperfect cylinders were actually

destroyed before the higher values of internal pressure could be reached.

Assuming that the scatter in the experimental data is directly re-

lated to the quality of the cylinder, it is obvious that a large number

of tests must be conducted when relatively imperfect cylinders are used.

Although the behavior of the individual models is erratic, the curves rep-

resenting the averages of the several tests behave very much according to

theory. An error in the modulus of elasticity would shift all data points

for the tests conducted on an individual cylinder an equal relative a-

mount, but the scatter between tests of different cylinders is strictly

a function of the local i_perfections in the models and of the testing

procedure. The trend of the averages is a measure of the ability of cell-
ulose acetate to serve as a material from which to construct the models.

Another interesting observation can be madeconcerning the effect

of initial imperfections as a function of r/t ratio. In figure E4, for

an r/t of 500, the scatter is large and the trend of the averages is

irregular. In Figure E5 for an r/t of 750, the trend of the averages

is smoother and more closely approaches the theoretical curve. In Figure
E6, for an r/t of lOOO, the trend of the averages is quite _iooth and

indicates that the behavior of the cylinders can be approximated by the

theory of Lo. Thus, it appears that, whenpressurized, test data for
the cylinders having the higher r/t ratios, or at least madefrom the

thinner materials, are less effected by the initial imperfections. This
assumesthat models of all thicknesses had the samerelative initial im-

perfections.

According to Lo, Crate, and Schwartz _3_ , a better correlation be-

tween theory and experiment can be obtained if the increment in buckling

parameter, A_cr, as computedby equation E6, is plotted against the

pressure paramater, p. This appears to be verified by the results shown

in Figure E8 for the cylinders having an r/t of 500. However, Figures

E9 and ElO for the higher r/t ratios show the data points to fall well
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above the theory line of Lo. In attempting to verify the theory, Lo as-

sumed that the unpressurized buckling parameter, _ was always equal
cro '

to 0.36, and subtracted this value from the experimental pressurized buck-

ling parameter, _r ' to obtain the incremental buckling parameter, Aacr.

However, from Figures E4, E5, and E6 it is seen that the unpressurized

buckling parameter, aLro, determined in the experimental program at the

University of Alabama is of the order of 0.2. Had the theoretical un-

pressurized buckling parameter, 0.36, been used to compute the points

shown in Figures E9 and ElO, the results would have very closely approx-

imated the theory of Lo. To a lesser extent, the same would have been

true for the higher values of p shown in Figure E8. Thus, it is clear-

ly seen that the effects of pressurization quickly minimize the influence

of model imperfections on the buckling strength of cylinders made with

thinner materials. Also, at higher pressures, the thicker materials are

less influenced by the initial imperfections. The theory of Lo appears

to be satisfactory for determining the critical buckling strength of high

r/t, pressurized cylinders and for lower r/t cylinders having high in-

ternal pressures. The references cited contain the results of twelve in-

dependent experimental investigations. Since the results obatined in this

study compare satisfactorily with the experimental results in the cited

references, no attempt was made to obtain comparisons with the large num-

ber of other investigations that are available in the literature.

The critical buckling parameter, GLr' of the unpressurized cylinders

has been plotted against r/t in Figure El2, and a best fit curve deter-

mined by least squares. The values of _ determined from this curve
cr

together with the respective r/t ratios was used to compute values of

Kc and Z from equations E2 and E8 respectively. These values have been

plotted in Figure El3 against the theoretical curve of these quantities

and the 90 per cent probability curve. It is noted that, in each case,

the results determined from the best fit line fall above the 90 per cent

probability line. Furthermore, in only two cases do the individual test

results fall below the 90 per cent probability line.
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CONCLUSIONS

The limited nature of the experimental work performed in this inves-

tigation does not permit reaching a large number of broad conclusions.

However, within the scope of the work performed, several limited but im-

portant conclusions can be drawn.

1. The large amount of scatter in the test results indicates that

more care should be taken in fabricating the test specimens and in con-

ducting the individual tests. Several nearly identical specimens should

be tested and the average of the results used for analysis purposes.

2. The manner in which the data obtained using cylinders fabricated

from cellulose acetate tend to verify the theory of Lo, Crate, and Schwartz

_3S , indicates that the use of this material for providing low cost test

cylinders should be encouraged. However, a satisfactory method of deter-

mining the modulus of elasticity must be used.

3. For cylinders having high r/t ratios, the effect of initial

local imperfections on buckling strength is quickly minimized by internal

pressure. The more rigid the walls of the cylinder, the higher must be

the internal pressure to satisfactorily minimize the imperfections.

4. In studying unpressurized cylinders, the test specimens should

be as nearly free of initial imperfections as possible. The presence of

such imperfections critically influences the buckling strength of such

cylinders.

5. The theory of Lo, Crate, and Schwartz _3] is satisfactory for

determining the critical buckling strength of pressurized unstiffened

cylinders provided that the walls behave as a membrane.

6. Test cylinders of cellulose acetate can be buckled elastically

several times without materially effecting the critical buckling load.

This is true for both the pressurized and the unpressurized conditions.

lO0



REFERENCES

El.

E2.

E3.

E4.

Harris, A. L.; Herbert, S. S.; Skene, W. T°; and Benjamin, R.J.:

The Stability of Thin-Walled Unstiffened Cylinders Under

Axial Compression Including Effects of Internal Pressure.

Journal of the Aeronautical Sciences, Vol. 24, No. 8,
August 1957, p. 587.

Batdorf, S. B. : A Simplified Method of Elastic-Stability An-

alysis for Thin Cylindrical Shells. NACA Rept. 874, 1947.

Lo, H.; Crate, H.; and Schwartz, E. B.: Buckling of Thin

Walled Cylinders Under Axial Compression and Internal Pres-
sure. NACA Report 1027, 1951

Flugge, W.: Die Stabilitat Der Krieszylinderschale. Ing-

Archiv, Bd. II, Heft 5, December, 1932, pp. 463-506.

lO1



TABLEEl. - TESTRESULTSFORCYLINDERSWITHr/t of 500.

Specimen - -
Number P P P _ o Acr cr cr cr

15

24

28

29

3O

15

24

28

29

3O

15

24

28

29

30

15

24

28

29

30

24

28

29

30

28

29

28

29

0

0

0

0

0

2

2

2

2

2

3

3

3

3

4

4

4

4

.

O.

O.

O.

O.

le

I.

i.

I.

I.

0

0

0

0

0

625

625

625

625

625

250

25o

25o

25o

25o

1.875

I.875

1.875

i.875

I.875

2.500

2.500

2.500

2.500

3. 125

3. 125

3.750

3. 750

120.0

99.0

108.0

130.0

133.o

223.3

171.3

233.3

250.3

253.3

186.6

166.6

256.6

256.6

259.6

172.9

m4.9

3i_.9

270.9

264.9

133.2

293.2

271.2

263.2

271.5

321.5

249.8

299.8

169.76

_o. 05

152.78

183.91

188.15

315.90

242.34

330.05

354.io

358.34

263.98

235.67

363.01

363.01

367.26

244.6o

2o4.99

445.49

383.24

374.75

188.44

4134.79

383.67

372.35

384.09

454.83

353.39

424.13

O.211

O. 175

o, 191

O. 230

O. 235

0.395

o. 3o3

0.413

0.443

0.448

0.330

0.294

0.454

o.454

0.459

O. 305

O. 256

o. 557

0.479

O. 468

O. 236

O. 518

0.479

0.465

o.48o

o.568

0.442

O.530

0

0

0

0

0

O. 184

O. 128

0.222

O.213

O.213

0.119

0.119

0.263

0.224

0.224

O. 094

O. 081

O. 366

O. 249

O. 233

O. 061

O.327

O.249

O.230

O.289

O.338

0.251

o.30o
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TABLEEli. - TESTRESULTSFORCYLINDERSWITHr/t of 750.

Specimen
Number

6

7
8

9

14

16

21

22

6

7

8

9

16

21

22

7

9

14

16

21

22
n..

7

9

16

21

22

P

0

0

0

0

0

0

I

I

i

i

I

I

i

I

2

2

2

2

2

2

3

3

3

3

3

3

D

P

0

0

0

0

0

0

0

0

1.406

1.406

1.406

1.406

1.406

1.406

1.406

1.406

2. 812

2 _• UJ._

2.812

2.812

2.812

2.812

4.218

4.218

4.218

4.218

4.218

4.218

P
cr

51

52

30

41

25

43

95.3

113.3

113.3

131.3

118.3

104.3

136.3

l]J¢.3

107.6

146.6

_1.6

126.6

139.6

113.6

Ill.9

162.9

126.9

124.9

129.9

ll6.9

cr

108.24

II0.36

63.67

87.O2

53.06

91.26

202.27

240.47

240•47

27 8.67

251.08

221.37

289.28

242• 59

228.37

311.15

300.53

268.70

296.29

241. ll

237.50

345.74

269.34

265.09

275.70

248. ii

CT
cr

O.202

O. 207

O.119

O. 163

O. 099

O.171

0.379

o.451

o.451

0.521

0.471

0.415

O.289

0.455

0.428

o.583

O.563

O. 504

o.555

o 452

0.445

0.648

o. 505

0.497

o. 517

0.465

cr

0

0

0

0

0

O.177

O.2bh

0.402

O.308

0.316

O. 118

O.464

o.4oo

0.405

O.384

0 529

o.32

O.398

o. 346

103



TABLEEII. - _ST RESULTSFORCYLINDERSWITHr/t of 750-CONCLUDED.

Specimen
Number P p P a _ A_

cr ,cr ..... , cr cr

7

9

21

22

7

21

22

Note:

4

4

4

4

4

5

5

5

5.625

5.625

5.625

5.625

5.625

7.o31

7.o31

7.031

153.2

133.2

133.2

148.2

138.2

126.5

_41.5

_1.5

325.15

287.70

282.70

3n_. 5_

293.32

268.48

300.32

300.32

O.609

o.53o

O.530

o.589

o. 55o

O.503

O. 563

O. 563

m

Values of A_
cr

were not conducted

dition.

are not given for cylinders

0.411

O.367

0.418

O.392

7 and 22 since tests

unpressurized con-on these cylinders in the
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TABLE EIII.- TEST RESULTS FOR CYLINDERS WITH r/t of lO00.

Specimen
Number

ii

17

18

26

31

32

P

II

17

18

26

31

32

ii

17

18

26

31

32

P P
cr

17

18

cr

26

31

32

17

32

0

0

0

0

0

0
,,I

3

3

3

3

3

4

4

Notes: I. In Tables

and

.

0

0

0

0

0

0

2.50

2.50

2.50

2.5o

2.50

2.50

5.00

5.oo

5.00

5.00

5.00

5-O0

7.50

7.50

7.50

7.50

7.5o

I0.0

I0.0

21

31

31

88,3

68.3

48.3

83.3

83.3

97.3

66.6

73.6

74.6

91.6

91.6

94.6

79.9

79.9

87.9

74.9

97.9

83.2

78.2

or

dimensionle ss.

Unpressurized tests were not

59.42

87.72

87.72

249.8

193.26

136, 67

235.71

235.71

275.32

188.45

208.25

2Ii. 09

259.19

259, 19

267,68

226.08

226.08

248.72

211.94

277.02

235.42

211.27

F
cr

o.&8

O. 219

0,219

O.624

0.483

o.342

o.589

o.589

o.688

0.471

O. 521

o. 528

O. 649

0.647

o. 669

o. 565

o. 565

O.622

o. 530

o. 693

o. 588

o. 553

cr

0

0

0

o.441

0.370

0.469

o.5Ol

0.428

,'3 ),_N

0.474

o.311

0.474

O. 334

El, EL1 and EIII, Pcr is expressed in pounds;

p are expressed in psi; p, _cr and A_cr are

conducted on cylinders II, 17, 18.
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TABLE EIV. - TEST RESULT AVERAGES

P

0

1

2

3

4

5

6

o

I

2

3

4

5

0

i

2

3

4

0

0.625

1.250

1.875

2.500

3.125

3.75o

0

1.406

2.812

4.218

5.625

7.031

0

2.50

5.00

7.50

I0. O0

A_r/t _cr cr

500

500

5oo

5oo

5oo

5oo

5oo

75o

75o

75o

750

750

750

I000

I000

i000

i000

i000

0.208

O.4OO

0.398

0.413

0.425

O.524

o.486

O. 160

O.429

o.514

O.513

o.562

0.543

O.195

o.553

Oo581

o.595

o.571

0

O. 192

O. 190

0.205

O.217

0.316

0.276

0

O.261

0.413

o.404

0.399

0.392

0

0.427

0.460

0.420

0.334
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APPENDIX F

SHE_ MGS_YOFTHREE_EGRALLYSTIFFENEDPANE_

By William K. Rey

The contents of this appendix were previously submitted as Progress Re-
port No. 4 for NASA Contract NAS8-11155.
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SHEARLAGSTUDYOF THREEINTEGRALLYSTIFFENEDPANELS

By William K. Rey*

SUMMARY

An experimental study was conducted to determine the effect upon the
stress distribution in integrally stiffened panels of varying the ratio

of the stiffener area to the sheet area. Three aluminum alloy panels with

rectangnlar integral stiffeners were instrumented with foil strain gages
to determine the strain distribution in the stiffeners and the webs under

axial compressive loads. The ratio of the stiffener area to the sheet

area was approximately one-half, one and two in the three panels tested.

Each of the panels was tested under four different loading conditions.

The experimental results were comparedwith a theoretical analysis.

Relatively good agreementwas obtained between the experimental results

and the theoretical analysis except for the section adjacent to the end
at which the load was applied.

INTRODUCTION

Integrally stiffened panels are being utilized in many structures
such as the thrust structure of the Saturn C-5 launch vehicle since this

type of construction provides the necessary strength with a _.-;.Nzamof

weight for certain types of loads. Whena concentrated load is applied
to one of the stiffeners, the manner in which the load is distributed

through the panel is influenced by shearing deformations in the thin webs

that connect the stiffeners. This influence is commonlyreferred to as

shear lag. The precise stress distribution throughout a stiffened panel
must be knownto permit the application of minimumweight design princi-
ples.

In a previous study (ref. F1), a survey of the literature indicated

a number of theoretical analyses were available for predicting the stress

distribution in stiffened panels but no experimental data were available
i "'Ii i _ I i

*Professor of Aerospace Engineering, University of Alabama , Univer-
' sity, Alabama and Project Director of NASA Contract NAS8-11155.
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for evaluating the different analyses whenapplied to integrally stiffened

panels. Data that are available for panels with stiffeners attached by

welding or riveting are of doubtful value when integrally stiffened panels

are considered. Furthermore, the data that are available for panels with
attached stiffeners were obtained by testing panels in which the total

stiffener area was greater than the sheet area whereas someof the inte-

grally stiffened panels of interest have a total stiffener area less than
the sheet area.

The test results in this report were obtained in the first phase of
an experimental program designed to provide stress distribution data for

integrally stiffened panels of various configurations. This phase of the
experimental study was undertaken to determine the effect on the stress

distribution of varying the ratio of the stiffener area to the sheet area

in integrally stiffened flat panels with constant cross-section stiffeners

of the samesize. Additional tests are planned to investigate the effects

of varying the number of stiffeners, using stiffeners of different sizes

on the samepanel and varying the stiffener area over the panel length.

In order to provide somemeasureof the effectiveness of the test

program, a matrix analysis of each panel based upon the Maxwell-Mohr meth-

od of analysing statically indeterminate structures was accomplished.

Whenadditional data becomeavailable from later phases of the test pro-
gram, all of the experimental data will be comparedwith other theoret-

ical analyses.

EXPERIMENTALINVESTIGATION

Specimens

Three integrally stiffened panels were prepared from a one inch thick

7075-T651 aluminum alloy plate. As indicated in Figure F1, each panel
consisted of seven uniformly spaced rectangular stiffeners of constant

cross-section. Eachpanel was twenty-four inches long in the direction
of loading by approximately seventeen and five-eights inches wide. The

cross-sections of the panels, identified as Panels B, C, and D, are shown
in Figures F2, F3, and F4 respectively.

Bondedresistance type foil strain gages with a gage length of one-

eighth of an inch were applied to each panel with a contact cement. As
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shownin Figure_F5, ninety-four uniaxial gages and twenty-four rectangu-

lar rosette gages were used on Panels B and C to provide a total of one

hundred and sixty-six strain gage channels. On Panel D, as shownin Fig-
ure F6, one hundred and ten uniaxial gages and twenty-four rectangular

rosette gages were used to supply one hundred and eighty-two strain gage
channels.

Machining of the three panels was accomplished in a shaper as shown

in Figure F7. Because of the limitations imposed by this machining oper-
ation, it was i_possible to maintain tolerances as close as desired. The

actual cross-sectional dimensions shownin Figures F2, F3, and F4 indicate
the variations in web thickness and stiffener cross-sections. The dimen-

sions were very nearly constant over the twenty-four inch length. The
aluminum alloy used is stress-relieved by stretching after solution heat-

treatment. However, machining evidentally relieves additional stresses

which results in somewarpage of the panels.

Equipment

Loading of the panels was accomplished by a hydraulic 6G,000pound
universal testing machine equipped with a load maintainer. Considerable

effort was expendedin attempts to insure that loads were applied in the

desired manner. As shownin Figure F8, loads were applied so as to min-

imize the introduction of any bending momentinto the panels. Each of

the panels was tested under four different loading conditions which are

identified in Figure F9 as loading conditions I, II, III, IV.

Each of the strain gage channels on the panels served as one of the

arms in a Wheatstone bridge circuit. In order to provide temperature

compensation, three foil gages mountedin small aluminumblocks (du_y

gage blocks) served as the other three arms of the Wheatstone bridge.

Each strain gage channel was equipped with an individual dummygage

block in order to permit switching outside of the bridge and minimize

the effect of chan_es in contact resistance. The dummyblocks were mount-

ed in a frame adjacent to the testing machine as shownin Figure F10.

Current was applied to the Wheatstone bridges by a size 8D, 12-volt,
lead-acid storage battery. A variable resistor in series with each of

the bridge circuits permitted the voltage impressed on each bridge to be

reduced to approximately ten volts and provided the meansfor calibrating
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each bridge. The output of the bridge circuits was routed through a two

hundred channel cross-bar type switching unit to an amplifier. The out-

put of the amplifier was in turn supplied to a four digit digital volt-

meter and a digital printer. An overall view of the testing machine and

associated instrumentation is shownin Figure F10. The control console

is shownin Figure Fll with the digital voltmeter at top, channel select-

or and indicator below the voltmeter, amplifier and amplifier power sup-
ply below the selector, digital printer below the amplifier and the power
supply for the printer at the bottom of the console.

,Figures_ FI2 and l_13 ar_.rphotographs iof the two'sides of a panel _po-

sitioned in the testing machine.

Test Procedure

Prior to each test, current was applied to all the strain gage chan-

nels for a period of approximately one hour during which the temperature

of the panel increased due to heating by the gage current. Temperature

equilibrium in the panel was achieved prior to testing.

After aChi@ving temperature equilibrium, a pre-load was applied to

the panel and all strain gage bridges were balanced and calibrated. Cal-

ibration was accomplished by shunting a known resistor across one arm of_

the bridge to simulate a pre-determined strain was indicated by the digi-

tal voltmeter. Periodically, during each test, the calibration was ver-

ified to compensate for any decay in the battery voltage.

For the loading conditions identified at I, II, and III in Figure

F9, a preliminary test was conducted to determine if the same load was

being applied to each of the loaded stiffeners and if the load was being

symmetrically supported by the base. This was accomplished by monitor-

ing all the strain gages on the loaded stiffeners and the strain gages

on all stiffeners at the section adjacent to the supporting base. This

preliminary test was also used to detect bending introduced by misalign-

ment of the panel or loading fixtures. Adjustments were made on the bas-

is of the preliminary tests until satisfactory loading was achieved. Im-

provements in the supporting base and loading fixtures were made during

the test program to simplify the load balancing procedure. Therefore,

not all of the tests were conducted with exactly the same loading and

supportint fixtures.

For loading conditions I, II, and III, loads were applied in lO00



pound increments up to a maximumload of 5000 pounds on Panels B and C
and in 500 pound increments up to a maximum load of 2500 pounds on Panel

D. For loading condition IV, loads were applied in 500 pound increments

up to a maximum load of 2500 pounds on Panels B and C and in 250 pound

increments up to a _ load of 1250 pounds on Panel D. At each in-

crement of load the strain was recorded by the digital printer for each

of the strain gage channels.

The data recorded by the digital printer was plotted as load versus

net strain for each of the strain gage channels. This preliminary plot

of the data was used to correct for any zero shift during testing and

also to detect inoperative gage channels or other apparent errors in the

data. From the corrected curves, the strain corresponding to a load of

lO00 pounds was determined for each channel. This corrected strain was

used in a computer program to determine the stress at each of the gage

locations. For each rosette location, the computer program determined

the magnitude and direction of the principal stresses, the magnitude and

direction of the ma_mmm shearing stress, the normal stresses parallel

and normal to the stiffeners and the shearing stress parallel to the stiff-

eners. The computer program is given in Appendix F1 in Fortran II.

MATRIX ANALYSIS

In order to provide a comparison between the experimental results

and one of the available theoretical _nalyses, an analysis based upon

the Maxwell-Mohr method was performed for each panel using matrix nota-

tion. This type of analysis is the same as the analysis referred to as

Method I in reference F1. The generalized force system e_ployed in the

analysis is identified in Figure F14 in which the generalized forces ql

through q_e represent the axial forces in the stiffeners at the indi-

cated locations and q37 through %0 represent the shear flow in the_

indicated web. The generalized force system is shown in greater detail

in Figure F15 for that portion of the panel between stiffeners 2 and

3 and between 2.7 and 5.7 inches from the loaded end. The forces

in the stiffeners, % through qss' are assumed to be positive when

compressive and the shear flows, qs7 through %o' are assumed posi.
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tive when the shear flow acts upward on the left-hand edge of a web ele-

ment as shown in Figure F15. The generalized force system was selected

to provide a direct comparison between the theoretical analysis and the

experimental results by providing a generalized force at each of the

strain gage locations in the stiffeners• The notation used in the ma-

trix analysis corresponds to the notation used in reference F2.

Matrix of Flexibility Coefficients

The matrix of fle_bility coefficients,

symmetrical matrix,_ given by

I

al,l al, e al,s

a2,1 a2, m a2,3

a6o, l a6o,2 a6o_3

_ij] ' is a 60 x 60

al,eO

a

BOjBC

Referring to Figures F1 and F14 for the necessary _.,m._.._;_-_o_ ....._.__ __.__=_÷-

ing the equivalent stiffener areas of stiffeners l, 2, 3, and 4 as At,

A 2, AS, A4, respectively, the 124 non-zero flexibility coefficients are:

L 1

alj I = ag, 9 - 3AIE

L 1

ai, _ " a2,1 " as, s = as_ s - _-_i E
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a_5 _3 6



=g -g " . . • =g =I
gl;1 _,I s,1 " 9,1

m g I • ,
m g 1 Im_ 1 "_I0_I II_

The elements of the second column of

and PI " Ps" P4 " O, are:

g.,,m - 0

gz, z • g_,z " g4,z"

=0
• = gSOjl

• obtained by setting P z

= "I
• glo,2

g -g -':g " . . . =g "0
II_ l_j2 l_j_ " _e,.__-,

I

gsT,z " L--T

.g .g - .... -g -0
gS8_ _9_ _ 40_ 2 80j 2

The elemBnts of the third column of _im]

and PI " Pz " P4 " O, are:

, obtained by setting Ps = i

-0
gx,_

gin,8 " gs,_ " g4:,3 e .... " g9,8 " I

=g - .... =g =0
glo,_ s gll_ l_,s 18_S

g_o,_ " I

" " " " " g_6_ = 0m g S "g_o_ _ g_l_ _

I

g37, _ " -_I

m _ m m m 0

g_e,_ gsg,_ g40,_ .... g44,_

_ " _ geO_ _ = 0g4e,_ " g47,_ g48,_ " "

The elements of the fourth column of [gim]

and P_ - Pz " P_ " O, are:

, obtained by setting P4 " I



D
=0

gl,4

gz_,4 " g3,4 " g4,4 "

glo,4 = g11,4" glmj4 "

g_sj4 " 1

1

• t g9,4 " I

" 0

= " 0
.... g3ej 4

g_7_4 " -_l

-g - - = " 0g_8_4 $9_4 g40_4 " " " g44_4

I

g4B,4 " L-_

" g = g4e,4 = .... = gsm, 4 = 0g4e,4 ,_,

I

gss, 4 = -_1

" g " ,,,,ge4,4 e5,4 g6e:_4
" = 0

.... g6o,4

Unit Redundant Force Matrix

The unit redundant force matrix, - j , is a 60 x 24 matrix.

The elements of this matrix are the values of the generalized forces when

the redundant forces are replaced by unit loads. The twenty-four re_undants,

q11 through qle' qzo through qm7 and qmz through q_e' were identified as re-

dundants one through twenty-four, respectively (q11 as redundant number one,

q12 as redundant number two, etc., with qme as redundant number twmnty-four).

For example, the elements in the first column of [girl are the values of the

generalized forces when q11 is replaced by a unit force while the other twenty-

_e redundants are zero. The 138 non-zero elements of Fg-_l are:
L"J

g11+n+em,1+n+m _ i 1

• where n " O, I, 2, ..... ,7

gm+n,1+n+em" - and m - O, I, 2
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where m = O, I, 2
and n = O, i, ..... , m

.;

Exter 3-_n_Load Matrix .-
' : ' load matrix,

For the four loading conditions considered, the externalthe external loads

_ _..is a diagonal _trix" To..simplifY computati°ns'

were considered as unit loads. Therefore,

:1.31



1

0
em

0

0

0 0

I 0

0 1

0 0

4

0

0

0

1

,/

2,

3.

4.

5.

6.

Matrix Computation

After forming the [aijS, [gimS, [_r], and [Pmn] matrices, the following

matrix operations were performed:

i. Evaluate [a_ = _ri] [ai_ [gjn] where _ri] is the transpose

of [girl "

•
Evaluate _s-m], the inverse of Cars] •

Evaluate _rm]"- Jars -I ] [an]"

Evaluate

Evaluate

the magnitudes of the generalized forces for the four loading conditions

considered. In this case, since [Pmn]iS a unit matrix, _]= [Gim].

The computer program used for the above matrix computations is given in

Appendix F2.

The nu_rical values used in th_matrixanalysis were as follows:

For all panels: Lm=._2_700,,, L2" 3.000", E = 10.5 xlOe psi,

G =3.9 xlO s psi.

For Panel B: bI - 2.6154,, b z - 2.6095",

tI = 0.0985", tz = 0.0935",
4

132



AI = 0.4114 in2, Az = 0.5300 in2, A3 = 0.5286 in2,

_4 = 0.2698 in2.

For Panel C: bI = 2.840",

tx = 0.099",

bz = 2.846", bs = 2.6085"

t2 = 0.i015", ts = 0.09925"

AI = 0.6684 in 2,

A4 = 0.3938 in2.

Az = 0.7917 in2, A s = 0.7908 in2 ,

For Panel D: bI = 2.7675", bz = 2.77675", bs = 2.770"

tI = 0.096", t z = 0.1005", ts = 0.1005"

A I = 0.2743 in2, A z = 0.4139 in2, As = 0.4203 inS,

A4 = 0.2122 inV.

T_ results of the matrix analysis are given in Tables FI _hrough

F4 for Panel B, Tables F5 through F8 for Panel C and Tables F9 through

F12 for Panel D. In each of these tables, the stress in each stiffener

is given at nine locations corresponding to the locations of the general-

ized forces in the stiffeners and the shearing stress in each web is given

at eight locations.

DATA

The experimental data are given in Tables F13 through F44. The data

from two tests of Panel B for each of the four loading conditions are

given in Tables F13 through F20. The data from two tests of Panel C for

each of the four loading conditions sre given in Tables F21 through F28.

The data from three tests of Panel D for each of the four loading condi-
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tions are given in Tables F29 through F40. The averages of the three

tests of Panel D for each of the four loading conditions are given in
Tables F41 through F4_. In each of these tables, the stress in each

stiffener is given at nine locations corresponding to the uniaxial strain
gage locations shownin Figures F5 and F6. The state of stress at each

of the strain rosette locations shownin Figures F5 and F6 is expressed

in terms of the normal stress perpendicular to the stiffeners (_x) , the

normal stress parallel to the stiffeners (_y), and the shearing stress

(_Xy). Positive normal stresses are compressive stresses.

The results of the matrix analysis are plotted along with the exper-
imental results in Figures F16 through F75. For each of the four load-

ing conditions on a panel, the theoretical analysis and the experimental
results are shownin a series of five curves as follows:

a) the_normal stress, Gy, in each of the stiffeners versus the dis-

tance from the loaded end of the panel (Figures F16, F21, F26,
F31, F36, F41, F46, F51, F56, F61, F66, FTI);

b) the shearing stress, _XY' in each web versus the distance from

the loaded end of the panel (Figures F17, F22, F27, F32, F37,
F42, F47, F52, F57, F62, F67, F72);

c) the normal stress, _y, parallel to the stiffeners in each web

versus the dist_uce from the loaded end of the panel (Figures

F18, F23, F28, F33, F38, F43, F48, F53, F58, F63, F68, F73);

d) the normal stress, _x' perpendicular to the stiffeners in each

web versus the distance from the loaded end of the panel (Figures

FI9, F2_, F29, F34, F39, F44, F49, F54, F59, F64, F69, F74);

e) the chordwise distribution of the normal stress, _y, in the

stiffeners across eight panel sections (Figures F20, F25, F30,
F35, F40, F45, F50, F55, F60, F65, F70, F75).

ANALYSISOFRESULTS

The theoretically predicted distribution of the normal stress in the

stiffeners was in good agreementwith the experimentally determined values
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for all panels although the agreement wasnot uniform throughout the pan-

els. In general, the largest difference between the theoretically pre-

dicted stresses in the stiffeners and the axperi_2ntally determined stress-

es occurred at the loaded and of the panel and the difference decreased

as the distance from the loaded end increased. In all panels for all

loading conditions, the theoretical and experimental stresses were very

nearly equal to each other at the supported end of the panel. In Panels
B and C the experimental stress was less than the theoretical stress in

the loaded stiffener at the section adjacent to the applied load whereas

in Panel D the experimental stress exceededthe theoretical stress at that

section. This difference in behavior of the three panels may be attrib-

uted to the relative size of the stiffeners. The experimental results

indicate that in Panels B and C the applied load was not uniformly dis-

tributed across the cross-section of the larger and thicker stiffeners

of these panels at the gage section 0.3 inch below the applied load re-

sulting in experimental stresses on the surface of the stiffeners less

than the theoretical stresses which were based upon an assumeduniform

distribution across a stiffener corss-section. In Panel D, with rela-

tively small stiffeners, the test results indicate that the load had not

diffused from the stiffener into the web at the section adjacent to the

applied load resulting in axperimental stresses that were larger than the

theoretical stresses. As explained in reference l, the analysis used as-
sumedthat the effective stiffener area consisted of the actual stiffener

area plus one-half of the web area on each side of the stiffener. The

theoretical analysis and the experimental results indicate that the pan-

els were long enough to achieve an essentially uniform stress distribu-

tion across the cross-section at the supported end of the panel.

The experimentally determined shearing stresses in the webs agreed

very closely with the theoretical stresses at certain sections but were

in poor agreement at other sections. In general, the agreement was some-

what closer in Panels C and D than in Panel B. In all tests, the theo-

retical and experimental shearing stresses in the webs were nearly equal

in the webs adjacent to the loaded stiffener. The largest differences

between the theoretical and experimental shearing stresses in the webs

occurred in the webs farthest from the loaded stiffener and at sections

near the top (loaded end) of the panel. These differences may be due in



part to the failure to achieve boundary conditions at the loaded end in

tests that correspond to the boundary conditions assumedin the theoret-

ical analysis.

The theoretical analysis assumedthat the normal stress in the webs

acting perpendicular to the stiffeners was zero. The test results indi-

cate that at certain sections this normal stress was relatively large for

someof the loading conditions. However, the variation in this normal

stress over the panel length was frequently erratic. This normal stress

mayhave been introduced into the panel by the test boundary conditions

at both the loaded end and the supported end of the panel since strains

normal to the stiffeners were restrained. This restraint would produce
stresses in the web normal to the stiffeners.

As previously noted, the theoretical analysis was based upon an ef-

fective stiffener area that included the area of adjacent webs. There-
fore, the theoretical analysis assumedthat the normal stress in the webs

acting parallel to the stiffeners was equal to the normal stress in the

stiffeners to which the webs were attached. Since the strain gauge ro-• i • • L _ • v__ • _ • _i...... _ • __i _ _ _ _ i .

settes were placed on the webs midway between the stiffeners, a direct

comparison of theoretical and experimental stress was not made. How-

ever, the experimental data indicates that, as the distance from the

loaded end of the panel increased, the normal stress in the webs acting

parallel to the stiffeners approached the normal stress in the stiffen-

ers in agreement with the stress distribution assumed for the idealized

panel.

CONCLUDING REMARKS

Since the three test panels were of the same general configuration

and only one theoretical analysis was considered, it is not possible to

make any broad generalizations concerf_ing the validity of the theoretical

analysis. However, the general trend of agreement between the experi-

mental results and the theoretical analysis implies that a satisfactory

experimental procedure was employed and also that the idealized structure

and assumed stress distribution used in the theoretical analysis approach-

es the actual conditions. Since the realtive agreement between the theo-

retical and experimental results was the same for all three panels, the

3



accuracy of the theoretical analysis appears to be independent of the ra-

tio of the stiffener area to the sheet area. The test results show that

the ratio of stiffener area to sheet area does affect the stress distri-

bution in a stiffened panel.

The effects of varying the number of stiffeners, using stiffeners

of different sizes on the same panel and tapering the stiffener cross-

section over the length of the panel are now being investigated under

the terms of NASA Contract NAS8-20164.
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APPENDIXFI

COMPUTERPROGRAMFORREDUCTIONOFTESTDATA

This program in Fortran II was used for test data obtained from llO

uniaxial gages and 24 rosette gages providing 182 strain gage channels.

Modifications were necessary whena different number of gages were used.

C

C

1

2

3

4

5

6

7

8

C

C

C',

C

INPUT-OUTPUT FORMATS

FORMAT (4OX,5hHTHE FOLLOWING DATA ARE THE RESULT OF THE RESOLUTION

1 of,2/,35X,65HSTRESSES FROM STRAINS OBTAINED DURING A TESTING PROG

2RAM CONDUCTED,2/,35X,56HAT THE UNIVERSITY OF AIABAMA UNDER CONTRAC

3T NAS 8-I/155. ,3/,40X,2hHALL STRESSES ARE IN PSI. ,2/,4OX,48HALL AN

4GLES ARE IN DEG. MEASURED FROM THE X AXIS. ,4/)

FORMAT (/,6F10.2,/)

FORMAT (36X,58HTHE FOLLOWING MATERIAL PROPERTIES ARE USED IN CALCU

ILATION,,2/,36X,23HMODULUS OF ELASTICITY -,F4.1,6X,21HMODULUS OF RI

2GIDITY -,F4. i,2/, 52X, 16HPOISSONS RATIO -,FI5.8,3/)

FORMAT (40X,2AS,/)

FORMAT (55X,8HTF_T NO.,2A5,2/)

FORMAT (14(13F6.1,/))

FORMAT (31X,17HUNIAXIAL GAGE NO. ,13,6X,8HSTRAIN -,F7.1,6X, gHSIGMA

IY -,F12.6,2/)

FORMAT (55X,IIHROSETTE NO.,14,2/,4OX,9HSIGMA X -,FI2.6,9X,9HSIGMA

IY -,FI2.6,2/,4OX, gHSIGMA 1 -,F12.6, 9X, gHTHETA 1 -,FI2.6,2/,4OXgHS

2IGMA 2 -,FI2.6,9X, gHTHETA 2 -,FI2.6,2/,4OX,9HSIGMA S -,FI2.6,9X, gH

3THETA S -,FI2.6,2/,4OX,8HTAU XY -,FI2.6,1OX, THTAU S -,F12.6,2/)

START PROGRAM

DIMENSION GF(4), C(2), E(182), S(182), V(lO)

PRINT I,

READ 2, A, G, GF

C(1)= (A/(2.0*G))-1.0 $ C (2)=A/(1.O-C (1)*C (1))

i
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PRINT 3, A, G, C(1)

I0 READ 4, T, 0

PRINT 5, T, 0

READ 6, E

DO Ii I=I, II0

II S(I )=2.@_E (I)*A/GF (I)

PRINT 7, (I, E(I), S(I), I=l,llO)

DO 13 I=Iii,180,3

DO 12 J=l,3

12 E (I+J-i)=2. O*E (I+J-I )/GF (J+l)

V(8)=E(I)-E(I+I)+E(I+2) $ V(4)--C(2)*(E(I)+C(1)*E(I+2))

V(6)=C (2)*(E(I+2)+C(1)*E(I)) $ V(7)--(v(h)+V(6) )/2 .0

V(9)=(V(6)-V(4) )/2 .O $ V(1)=C(2)*(V(8)+C(1)*E(I+I) )

V(2)-C(2)*(E(I+I)+C(1)*V(8)) $ V(8)=(V(1)-V(2) )/2.0

V(IO)=SQRT(V(9)*V(9)+V(8)*V(8)) $ V(3)=V(7)-V(IO)

V(5)-V(7)+V(IO) $ V(4)=ARCTAN(V(9)/ABS(V(8)))

IF (V(8)) 21,22,23

21 v(6)=90.O*(v(h)/3.14159265-1.o) $ GO TO 13

22 IF (V(9)) 32,31,31

31 v(6)--45.0 $ GO TO 13

32 V(6)=45.0 $ GO TO 13

23 V(6)=-V (4)-90.O/3.14159265

13 V(4)=90.O+V(6) $ V(8)_45.O+V(6) $ PIRINT 8,[i!,((V(J)/':J=l,lO)

IF (E(182)) I0, IO, 40

40 STOP

END
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APPENDIXF2

COMPUTERPROGRAMFORMATRIXANALYSIS

The following program in Fortran IV was used to perform the necessary
matrix computations.

C

5

13

0

21

29

41

43

4n

C

33

30

C

MAIN ROUTINE

REAL LI, L2

DIMENSION GRI (24,60) ,ARS(24,24),UNIT(24,24) ,GRM(24,4), CARN(24,4),

I ARN (24,4) ,AIJ (60,60), TEMP2 (60,4), GIR (60,24), GIM(60,h),

2 GJN(60,4), QIN (60,4), TEMPI (34,60) ,PMN (4,4),A(4)

EQUIVALENCE (ARS(1,1),GRI (l,1)), (UNIT(I,I),GRI (1,2_)), (GRM(1,1),

I GRI (1,49)), (CARN(I, I), GRI (1,53)), (ARN (I,I) ,GRI (1,57)),

2 (TEMP2 (i,i) ,AIJ (l,1)), (GIR (I,I),AIJ (i,5) ),(GIM(1,1) ,AIJ (1,29))

3 ,(GJN(I,I) ,AIJ (1,33)), (GIN(I,I),AIJ (,37) )

DATA LI,L2 ,BI,B2 ,B3/2.7,3.0,2.7675,2. 77675,2.77/

DATA TI, T2, T3/O. 096, O.1005, O.1005/,E, G/IO. 5E+6, 3.9E+6/

DATA (A(I),1=1,4)/O.2743,O.4139,0.4203,0.2122/

FORMAT(35HITHE UNIT REDUNDANT FORCE MATRIX IS///60(2(12F10.6,/),/)

1)

FORMAT(89HI_IE MATRIX DF _FI_XIBII_TY COENFICIENTS IS (VALUES HAVE

IBEEN SCALED BY A FACTOR OF I(_6)///60(5(6PI2FIO.6,/),/))

FOEMAT(iSHITHE _X ARM IS//).

FORMAT (22x,_E20.9.,/)

FORMAT(58HIYHE MATRIX ARS ,IS SINGUIAR. EXECUTIDN HAS HEEN TERMINAT

lEO/n-n)

FOR AT(19 lTHEMATRIX CAP IS//)

FORMAT(18HITHE MATRIX QIN IS//)

FORMAT(33HITHE UNIT EXTERNAL LOAD MATRIX IS///60(22X, hFIO.6,/),/)

COMPUTE THE ELEMENTS OF THE MATRIX FMN

DO 30 I=I,4

DO 33 J--l,4

PMN(I,J)=O

PMN(I,I)=I

COMPUTE THE ELEMENTS OF THE MATRIX GRI WHICH IS THE TRANSPOSE OF
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C

i

4

C

6

THE UNIT REDUNDANT FORCE IMTRIX GIR.

DO 1 1=1,24

DO I J=1,60

GRI(I,J) = 0

DO 2 K=I,8

N= K-I

DO 2 L=I,3

M= L-I

Cal (I+N+8*M,II+N+9_aM) = I

GRI (I+N+8*M, 2+N) = -i

DO 3 K=I,3

M = K-I

DO 3 L=I,K

N = L-I

GRI (I+8*M, 37+8"N ).....-1 •O/LI

DO 4 1=1,6

GRI (I+8*M, 37+I+&_N) = I.O/L2

GRI (I+I+&_M, 37+I+8.N) = -I.O/L2

GRI (7+8.M,44+8.N) = I.O/LI

GRI (8+8*M,44+8*N) = -I.O/LI

PRINT 5, GRI

COMPUTE THE MATRIX OF FLEXIBILITY COEFFICIENTS AIJ

DO 6 1=1,60

DO 6 J=l,60

AIJ(I,J) = 0

DO 7 I=1,4

T = L1/(3.O*E*A(I))

AIJ (9-1-8,9-1-8 ) = Y

AIJ(9*I,9*I)- T

T _ L1/(6.0*E*A(I) )

AIJ(9*I-8,9*I-7) = T

AIJ (9-I-1,9-I) = T

T = (Ll+L2)/(3.@_-E*A(I) )

AIJ (9-I-7,9-I-7) = T

AIJ(9*I-I,9*I-I) = T

T = (2.0*L2)/(3.O.E.A(I))



7

9

I0

Ii

12

C

14

C

DO 8 J=2,6

kIJ (9*I-J, 9",'-I-J)= T

T " L2/(6._,E*A(I ))

DO 7 J=l,6

AIJ (9":-I-J-l,9*I-J) = T

T .. (LI*BI)/(_TI)

AIJ(37,37) " T

AIJ(hh, )= T

T = (L2_BI) / (_,'_TI)

DO 9 I=38, 43

AIJ(I,I) - T

T = (LI#B2)/(_,_-T2)

AIJ (45,45) = T

AIJ(52,52) = T

T = (L2*B2)/(C-_T2)

DO I0 1=46,51

AIJ(I,I) = T

T = (LI*B3) / (C_×-T3)

AIJ (53,53) = T

AIJ(60,60) = T

T = (L2*B3)/(C-x_-T3)

DO II 1=54,59

AIJ(I,I) = T

DO 12 I=l,60

DO 12 J=l, 60

AIJ(J,I) = AIJ(I,J)

PRINT 13, ((AIJ (I,J),J=l, 60) ,I=1,60)

PERFORM _ MATRIX MULTIPLICATION T_4PI = GRI "_AIJ.

DO 14 I=1,24

DO 14 J=1,60

TEMPI(I,J) = 0

DO 14 K=I,60

TEMPI(I,J) = GRI(I,K)_AIJ(K,J)+TEMPI(I,J)

SET GIR EQUAL TO THE TRANSPOSE OF GRI.

DO 15 1=1,60

DO ]5 J=1,24



15 GIR(I,J) = GRI(J,l)
C CLEARALL ELEMENTS OF MATRIX GJN TO ZERO.

DO 16 1=1,60

DO 16 J=l,4

16 GJN(I,J) = 0

C COMPUTE NON-ZERO ELEMENTS OF MATRIX GJN FROM FORMULAE.

DO 17 I=2,9

DO 17 J=l,4

17 aJN(l,J)- I

GJN(1,1) = 1

c-J_(lo,2)- 1

GJN(19,3) = I

GJN(28,4) = I

DO 18 1=2,4

18 GJN(37,I) = 1.O/L1

c-,m(h5,3)- 1.o/u.

GJN(45,4) = 1. O/L1

GJN(53,4) - I.O/LI

PRINT hh, ((GJN(I,J),J=I,4),I=I,6g))

C PERFORM THE MATRIX MULTIPLICATION ARN = T_4PI * GJN

DO 19 1=1,24

DO 19 J=l,4

ARN(I,J) = 0

DO 19 K=I,60

19 ARN(I,J) - TEMPI(I,K)*GJN(K,J)+ARN(I,J)

PRINT 20

PRINT 21, ((ARN(I,J),J-I,4),I'1,24)

C PERFORM THE MATRIX MULTIPLICATION ARS = TEMPI * GIR

DO 23 I=1,24

DO 23 J=l, 24

ARS(T,J) = o

DO 23 K=I,60

23 ARS(I,J) = TEMPI(I,K)*GIR(K,J)+ARS(I,J)

C SET UP IDENTIYY MATRIX UNIT FOR INVERSION

DO 25 1=1,24

DO 24 J=1,24
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24 UNIT(I,J)= 0

25 U_IT(I,:)- I

C INVERT THE MATRIX ARS AND LEAVE RESULT IN THE MATRIX UNIT.

DO 32 M=1,24

28 T = ARS(M,M)

IF(T.NE.O.O) GO TO 35

DO 26 J-M,24

IF(ARS(J,M).EQ.O.O) GO TO 26

DO 27 L=M,24

T = ARS(M,L)

ARS(M,L)- ARS(J,L)

27 ARS(J,L) = T

GO TO 28

26 CONTINUE

PRINT 29

STOP

35 K1 = M+I

DO 34 L=KI,48

34 ARS(M,L) = ARS(M,L)/T

DO 32 K=1,24

IF(K.EQ.M) GO TO 32

S = ARS(K,M)

K1 - M+I

DO 31 L=KI,48

31 ARS(K,L) - ARS(K,L)-S*ARS(M,L)

CONTINUE

C PERFORM TI_ MATRIX MULTIPLICATION GRM = -UNIT * ARN

DO 36 1=1,24

DO 36 J=l,4

QRM(:,J)- o

DO 36 K=1,24

36 GRM(I,J) = -UNIT(I,K)*ARN(K,J)+GRM(I,J)

C PERFORM THE MATRIX MULTIPLICATION TEMP2 = GIR * GRM

DO 37 1=1,60

DO 37 J=l,4

TEMP2(I,J) = 0



DO37 K=1,24

37 rm_2(i,J) - aIR(I,K)*QRM(K,J)+ZSmm(I,J)

C PERFORM THE MATRIX ADDITION GIM = GJN + TEMP2

DO 38 1-1,60

DO 38 _-1,4

C PERFORM _HE MATRIX MULTIPLICATION CARN = T_P1 *GIM

DO 39 I=1,24

DO 39 J'l,4

CAm_(I,J)- O.

DO 39 K-I,60

39 CARN(I,J) = T_4PI(I,K)*GIM(K,J)+CARN(I,J)

PRINT 41

PRINT 21, ((CARN(I,J),J,,I,h),I-I,24)

C PERFORM THE MATRIX MULTIPLICATION QIN = GIM * PMN.

DO _2 I-1,60

DO 42 J'l,4

0XN(I,J) - 0

DO 42 K-l,4

42 QIN(I,J) = GIM(I,K)*PMN(K,J)+QIN(I,J)

PRINT 43

PRINT 21, ((QIN(I,J) ,J=l,4) ,I=1,60)

STOP

END

_lh5



REFERENCES

F'J.o

F_o

Rey, William K. : Matrix Shear Lag Analysis Utilizing A High-

Speed Digital Computer. Section IV of the Stummary Report
for NASA Contract NAS8-5012, November 1962.

Bruhn, E. F. : Analysis and Design of Flight Vehicle Structures.

Tri-State Offset Company, 1965.



TABLEF1. - MATRIXANALYSISOFPANELB FORLOADINGCONDITIONI

F = 1 kip

i Web.No. 1
Stiff.
No. 2

y Stiff.
No. i

in.

i,

Stiff.

No. 4

y xy y xy y

0

382.6

5_5.7

596.9

607.3

604.8

6oo.0

596.5

595.4

O.3 2430.7

1.5
3.0 1657.8
4.5
6. o 119o. 5
7.5
9.0 937.0

io.5
12.0 795.3

13.5
15.0 714.9
16.5
18.0 67O. 1
19.5
21.o 647.8
22.5

23.7 641.9

456.3

377.2

275.1

188.1

122.5

74.8

39.3

12.0

Stiff. Web.

No. 3 No. 3

°y

0

121.8

156. I

1o8.5
294.9

391.9

455.4

495.3

519. o

531.3

534.6

86.9

64.3

44.4

28.3

15.2

4.7

1195.6

650.6

352.9

197.3

Iii.9

62.4

31.0

9.2

0

121.3

241.3

337.5

408.6

457.8

489.0

505.9

5io.6

TABLE F2. - MATRIX ANALYSIS OF PANEL B FOR LOADING CONDITION II

P = i kip

Y Stiff.

No. I

in. (y

Y

0.3 O
1.5

3.0 382.6

4.5
6.o 545.7
7.5
9.0 596.9
io.5
12.0 607.3
13.5

15.0 604.8

16.5
18.0 600.0

19.5

21.0 596.5
22.5

23.7 595.4

Web.

No. 1

xy

-591.8

-227. I

Stiff.

No. 2

0
Y

1886.8

1205. I

860.9

Web.

No. 2

xy

807.7

4n.o

Stiff.No. 3

a

Y

0

296.4

438.4

Web.

No. 3

xy

175.8

134.8

Stiff.

No. 4

(7

Y

0

175.o

324.2
-71.2

-I_.5

3.4

6.7

4.9

1.7

709.4

641.0

609.4

594.6

588.2

586.5
I I i

211.3

n4.o

63.4

35.0

17.3

5.1

5oo.8

531.0

546.8

555.4

559.6

56o. 7

I

88.0

421 5
53.7

480.9

31.5
515.8

17.7

535.4
8.8

545. i
2.6

52Y.

1L7



I
TABLE F3. - MATRIX ANALYSIS OF PANEL B FOR LOADING CONDITION III

P-- Ikip

Y

in.

o.3
1.5

3.O

4.5
6.0

V.5
9.0

10.5
12.0

13.5
15.o
16.5
18.o

19.5
21.0

22.5

23.7

Stiff. I Web. Stiff.i Web. Stiff. Web. Stiff.
No. 1 No. 1 No. 2 No. 2 No.,3 No. 3 No. 4

y xy y xy y xy y

0

156.1

294.9

391.9

455.4

495.3

519.o

531.3

534.6

-241.4

-193.4

-134.9

- 88.4

- 55.6

- 33.0

- 17.0

- 5.1

0

296.4

438.4

5oo.8

531.0

546.8

555.4

559.6

560.7

-876.6

-472.0

-260.1

-15o.2

- 88.4

- 50.9

- 25.9

- 7.8

1891.8

1225.4

890.8

739.8

667.2

630.5

611.5

602.5

600.1

487.5

1_8.9

23.1

12.7

18.I

IA.3

8.4

2.7

0

485.4

650.1

675.7

661.6

641.7

625.9

616.6

613 9

TABLE F4.- MATRIX ANALYSIS
P

y Stiff. Web
No. 1 No. 1

in. o -_
y xy

o.3 o
i.5 -93.8
3.o 60.7
4.5 -83.6
6.0 120.7

7.5 -66.9
9.0 168.8

io.5 -49.5
12.0 204.3

13.5 -34.2
15.0 228.9
16.5 -21.8

18.0 244.5

19.5 -II.7

21.0 253.0

22.5 - 3.6

23.7 205.3

OF PANEL B FOR LOADING CONDITION IV

= I kip

Stiff. Web i Stiff. Web Stiff.

No. 2 No. 2 iNo. 3 No. 3 No. 4

y xy I Y xy y

-282.5

-229.0

-162.5

-108.3

- 69.0

41.4

21.5

- 65

i

0

242.7

325.1

337.9

330.8

320.9

313.0

308.3

307.0

-743.0

-361.0

-175.3

- 89.3

- 47.2

25.0

- 12.0

- 3.5

0

87.5

162. I

210.8

240.5

257.9

268.7

272.6

273.9

1853.2

1113.4

71b.o

52o.o

421.2

369.0

341.4

328. i

324.6

-rl.P
,.,L,M. U



TABLE F5. - MATRIX ANALYSIS OF PANEL C FOR LOADING CONDITION I

P = Ikip

{ ! ,

No. I No. i No. 2 No. 2 No. 3 No. 3 No. 4

O.3 1496. I

1.5
3.0 1120.7
4.5
6.o 859.8
7.5
9.0 698.2
io.5
12.o 597.2
13.5
15.0 534.3
16.5
18.0 496.6

19.5
21.0 476.9

22.5
23.7 471.5

a .

938.6

587.4

363.6

227.4

141.6

84.8

45.3

13.5

0

204.7

316. I

366. I

387.0

394.6

396.7

397.0

396.9

324. i

283.3

224.6

167.5

118.2

77.2

42.5

13.3

0

81.4

158.8

218.2

261. i

290.6

309.4

319.6

322.5

0

91.2

62. I

84.2
125.7

71.9
180.I

57.3

223.4
42.6

255.6
28.9

277.4
16.4

289.9

5.2
293.4

TAHLE F6. - MATRIX ANALYSIS OF PANEL C FOR LOADING CONDITION II

P = I kip

Y

in.

Stiff.

No. I

O

Y

0.3 0

1.5

3.0 204.7

4.5
6.0 316. i

7.5
9.0 366.1

1o.5
12. O 387. O

13.5
15.0 394.6

116.5

18.O 396.7

19.5

21.0 397.0

22.5
23.7 396.9

Web

No. I

xy

-5ii. 9

-25o.7

-112.6

- 47.o

- 17.2

- 4.8

- 0.6

0. i

Stiff.

NO. 2

O
Y

1263.1

871.6

639.2

518.8

455.7

422.7

405.6

397.7

395.6

Web

No. 2

xy

631.7

359.7

203.4

118.O

69.2

39.7

20. I

6.1

Stiff.

No. 3

Y

O

171.6

266.9

313.8

338. o

350.9

357.9

361.3

362.2

Web

No. 3

xy

139.5

ns.o

83.3

56.4

36.4

22.1

11.5

3.5

Stiff.

No. 4

(Y
Y

0

95.0

181.9

2_.9

287.5

315.1

331.8

340.5

342.8
I

I49



TABLEF7. -MATRIX ANALYSISOFPANELC FORLOADINGCONDITIONIIi
P = I kip

Y

in.

r

Stiff. Web Stiff. Web Stiff. Web _ Stiff.

No. I No. I No. 2 No. 2 No. 3 No. 3 I No. 4

°y %y °y

0.3 0

1.5

3.0 81.4

4.5
6.0 158.8

7.5
9.0 218.2

10.5
12.0 261.1

13.5
15.0 290.6

16.5

18.0 309.4

19.5

21.0 319.6

22.5

23.7 322.5

0 1264.5
-203.6

-174. i

-133.7

- 96.6

-66.3

- 42.3

171.6

266.9

313.8

338.0

350.9

-694.4

-417.4

-252.6

-157.i

- 98.3

- 59.4

4o8.4
885.5

166.5
662. i

52.9
54& 9

7.5
481.6

-7.6
446.6

-9.9

23.0

7.1

357.9

361.3

362.2

427.5

418.0

415.5

0

277.9

403.8

443 8

449.5

443.7

436.2

431.0

429.3

TABLE F8. - MATRIX ANALYSIS OF PANEL C FOR LOADING CONDITION IV

P= l_p

Y

in.

o.3
1.5

3.0

4.5
6.0

7.5
9.0

lO. 5
12.0

13.5
15.o
16.5
18.0

19.5
21.0

22.5
23.7

Stiff. Web Stiff. Web Stiff. i Web Stiff.

No. i No. I No. 2 No. 2 No. 3 ] No. 3 No. 4

0

31.o

62.9

9o.o

iii. 7

127.8

138.7

_4.9

_6.7

-77.6

-71.7

-61.1

-48.7

-36.3

-24.6

-13.9

-4.4

0

47.5

90.9

122.4

_3.8

i57.5

165.9

170.2

171.4

-212.2

-182.9

-_i. 5

-103.0

- 71.2

- 45.7

- 24.9

- 7.7

0

139.0

201.9

221.9

224 8

221.9

218. i

215.5

2_.7

-627.7

-3_.3

-197.8

-112.9

65.1

36.8

18.5

5.5

1269.7

842.5

574.6

425. I

339.7

290.5

262.7

248.8

245.0

_5o



TABLE F9. - MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION I

P = I kip

Y

in.

Stiff. Web Stiff. Web Stiff. Web Stiff.

No. I No. i No. 2 No. 2 No. 3 No. 3 No. 4

y xy y xy y xy y

3645.6

2300. I

1558.i

1190.0

999.9

899. I

846. o

82O.6

8_.o

1423.9

706.8

350.5

181. I

96.0

5O.6

24.2

7.0

0

56O. 9

761.6

806.4

8o5.1

794.1

784.4

778.5

776.8

504.6

399.6

273.4

174.7

106.8

61.7

31.1

9.3

0

234.3

432.7

561.4

639.6

685.4

711.0

723.7

727.0

141.7

123.0

94.0

65.7

42.9

26.0

13.5

4.1

0

181.2

355.9

489.4

582.9

643.9

68o. 7

699.9

705.1

TABLE FlO. - MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION II

P= lkip

Y

in.

0.3

1.5
3.0

4.5
6.0

7.5
9.0

lO.5
12.0

13.5

15.o
i6.5

18.0

19.5
21.0

22.5

23.7

Stiff. Web Stiff. Web Stiff. Web Stiff.

No. i No. I No. 2 No. 2 No. 3 No. 3 No. 4

y xy y xy y xy y

0

560.9

761.6

806.4

805. I

794.I

784.4

778.5

776.8

-593.6

-191. I

- 42.7

12.4

io.5

9.3

5.6

1.8

2416.0

1487.7

lO62. o

891.2

819.7

788.5

774.5

768.5

Y(,7.0

0

8_9.1
420.4

401.8

604.2

193.7

679. I

99.3

713.6
52.9

731. I
28.1

740.3
13.5

7_. 8
_.0

746. o
,,

197.9

145.5

89.3

51.3

28.5

15.3
I

7.3
4
i 2.1
q

0

253.0

459.8

586.7

659.5

7oo.o

721.6

732.0

"r3)L. 7

i51



_BLE FII.- MATRIXANALYSISOFPANELD FORLOADINGCONDITIONIII
P= Ikip

Y I Stiff. Web I Stiff. Web Stiff. Web Stiff.
No. 1 No. 1 i No. 2 No. 2 No. 3 No. 3 No. 4

in. (_ T _ • a 'I;
y xy y xy y xy y

0.3 0

1.5

3.0 234.3

4.5
6.o 432.7

7.5
9.o 561.4
lO.5
12.0 639 •6

13.5
15.o 685.4
16.5
18.0 7II.0

19.5

21.0 723.7

22.5
23.7 727.0

-248.o

-189.0

-122.5

- 74.5

- 43.6

- 24.4

- 12.1

- 3.6

o

420.4

604.2

679. I

713.6

731.1

740.3

7h4.8

746.0

-878.1

-432.9

-219.9

-118.4

- 65.7

- 36.0

- 17.7

- 5.2

2379.3

1584.5

1076.8

909.6

835.7

800.7

783.6

775.8

773.8

5o7.7

135.6

13.3

- 15.4

- 17.0

-12.1

- 6.7

- 2.1

0

602. I

841.8

860.6

838.7

815.6

797.3

787.8

785.1

TABLE F12. - MATRIX ANALYSIS OF PANEL D FOR LOADING CONDITION IV

P= Ikip

y Stiff.
No. I

in.

Y

0.3 0

1.5
3.0 90.6

4.5
6. o 178.o

7.5
9.o 244.7
io.5
12.o 291.4
13.5

15.0 321.9

16.5

18.0 340.4

19.5
21.0 350.0

22.5
23.7 352.6

Web

No. I

xy

-95.9

-83.2

-63.6

-_. 5

-29.0

-17.6

-9.1

-2.8

Stiff.:

NO. 2

Y

0

126.5

229.9

293.4

329.8

350.0

36O. 8

366.0

367.4

Web

No. 2

-j

xy

-284.5

-221.4

-157.9

- 92.5

- 55.5

- 31.7

- 15.8

- 4.7

Stiff.

No. 3

G
Y

0

324.6

420.9

430.3

419.4

407.3

398.7

393.9

392.5

Web

No. 3

xy

-787.3

-355.6

-161. o

- 77.2

- 38.7

- 19.6

- 9.2

- 2.6

Stiff.

No. 4

Y

2356.3

13h9.5

8hh.2

615.4

5o5.7

45o.8

422.9

409.8

406.5

152



D i,

b

P_
N

t-'

c_ P_
Z b

.B

b N

0

•_ 0

N
0 -_ l._

cr_ _ b

_ II

0 b N
J rO

4-, _ b 0N °

E-t

_..t r-I

-r't

_N

b

b N

b _

.r-t

,d c_ ,d u-, _, _4 _ ,d

0 _ ,---.1 0 _ _

_-t ox ,-I co o'x D.- O ,-I

I _ _'_ _ _ _

!

O _ ox o'x "L_ t"--- _O

xO xO _O ¢_ Ox ,-I ,--4
,-4

" , ,4 c_

0 _ _ _ _ o_ 0

r-I ,--I _-I
I

o -_ co _ o _ _

oo ox _ O ox ,-I
xO "LrX _, ,-.4 ,--_

O CO cO _'h iv_ _ ,--I l".--
xtD O Om OO _ xO _O

,-4

_ r---I

,--I ,--I ,--.I ,.--4 ,..-I r.-4 ,--t O..I (kl OJ

].53



D
b

b

b _

0

I

_ b _

Z

o
•M II ._

b Mo

M _

o -,.-I b 0

r-4

.S

b _4

(7.,

r-t

,4
0

d,

._.4
0
r-.-f ,..-4

d,
_M
r.-t

Ox

0

_5
p,.-

_S
-.-I

r-t

oS
!

,-.4

.d ,4
p.-

0

o,,

_.4

o,1

,2.,

!

,,D

,Z oS
0

_S
_M r.-.t

,q
o'_

oo

,4
c_
r-t

_d ,d d,
0

c_

o;
p.._

_4
r-i

0

0
r--t

0

!
ox

o3
r-t

O'x

_4
0

_S
0

0
,d

!
r.-t

0

0

D--

_4

,d
0

r,-- r..i

D..-

,d

_J

ox

UN !

0

0
0
r-4

_S

ox

r--t

,S oS
D.-

r--t

,4
,,0

g, d,
0

r-.-t

!

0

g_
r'--t r-'-t

,--t

0

c_
r,.-
0

0

r--t

Ox
0

".C)

,4 ,S
f,..._ ox

_S

!

I

ISL



c,.] ._._

.H

ogZ

c{

bP'_

b_
N

b

b N

i:r:l ,-., _ b b'_
,,o _c_

r..,] z

•_ N
0:: _ k•

oJ

o•r'l II

[J o_ O N
r....)

I

.r-t

o .m b

r-t

o

.S

N

b N

bP'_

.H

0

co 0 0 c_ oa _=_ _- .__

o_ xO ox co ce_ ",0 ,,0
c_ _ _=_ uf_ m m m

0 '_0 co _ _._ 0 .-_

0 ,-..I o_ 0,, wD _ o,_

e,_ 0 _ r--I c_ O_ c_ .-_

_0

0

d

P-- 0 0 _) ,-t _ o,i co

i

d, J _ , ,_ _ _4
.-_ c%1 ,-{

co

i

ao H cO 0 0 ,49

d d _ , -4 j dwD 0 i i ,-_
i _ _I

I

0 H --T_ r_ D-- _ O
ox ['-- ,.0 ,,0 _r_ "Lrx

_,_ _ I I I
I I

0 c_ o4 r--I r-_ Ox l'q

,,0 ,,0 co _ O _ ox ",0

_ I__ r,_ _ i _ O

I

0



...... n

,r--I

_ II ,,_

0
t r._

o _

°r.I

b

b N

b

N

b

b N

b

N
t-'

b

D N

D

0

12)

om ',.0 c) _ oo r,-- co

xO ax -:d" _ -,d" x£) _ ,-_

,-4 0 c_ (Tx _ c_
r...4 o,i ,.-I

L_'- [_-- OX CO 1._ r-I 0 [_-

I _ --.d" oO

!

cC.) ,- I _-0 CO _C) _ _--: r- '

_A & _A _ _ _ E ,,-\

O_

r-_ I _ C)
C".-. ",.£) ",,C) _ ",,0 ",.,iD

I l-_ I I ,-I
I

¢_ 0 xO c_ ox _I _ c_ 0

r-I l--I

,l_ _ _. o -.4 E _
0 _, (_ _ _t _ _ _ _l

_ I I I
I I

co _ 0 0 _ 0 co

I

0

0 0 _ o_, -_ _ _l_

ox b-- _o c_- _ _ 0

Z_6



,,0
,--I

Or--I
-r4

o

"a

_d
crl_

_4

.H

_Z

r--t

d

r.rl_

b

b

t_ N

0

N

b

t_ N

b

N

0

b N

0

0

c_ _ co co 0 0 0

0 _D O_ cO _ co 1._ 0

_. _1 "L_ _ _ _ cu
,--,I r-I I--t I I

1 I

e_l D- _ a_ I _ o,I 0
e_- _ _ ,-_ t I
I I I I

_A _ _ , #, _& c_
0 co o_ _ t _ _ ,-_

0 _ co 0 _ _ c_

I

0

_°

i--4 i--I r-'l t I I I
I I i

I I

..... ,

0

aD _ oJ o_ _ o_

_ 0 _ 0 _ 0 "Lfx 0 "_ 0 _LrX 0 _ 0 _ P.-



q-i-.-r
.,-4

_P

b_:_

gl

E_ ,,-I II I_
D'J -_

EII 'I_

bNi o

.el

_N

O N

0

0

0 _ _ co _ _ _

_'_ L"-- r-- r.-- ["-- _ '_D ',0

_." _-_ _ _ _ _ 0

_0

0 0

0

ox
0

!
iii

0

t-.-
',,0
_o

,d

I

,S

I I
r--t
I

i i
I

_4
r-I
a3

0
£,.-

I

D..-

I

,-.I

,--I
!

O'x _ oD
I

I.M

r-I

_ _ID co _ 0 D_. ,-i

r--I _--I _--I I I I i

! i I

,-I

I I I l

0 0

IF8



¢H

C_

f_

c;

Q)

-PI

Ca_

Q)
E-_ O4

o
•Pl II _,

CQ .H I_

o

o

d
Z

.s

.r-t

b

b _

b N

b _

N

b

b N

b

N

b_:_

b N

.el

0 0 _ _ D.- co _ o_

e_l I I
i I !

0 -.1" 0 ox _ o4 _

i H _-I I I ,
I I

0

0_ ir_ O_ (30 co r-I _-I

co _ 0 _ID _D ,.-I O'x
,-I

I
I I I

d
!

_ 0 _ o_ o_

h- O_ I _0 0 0
,-I _ o4 o4 (Y_

,,, • •, , =, , ,,,

_-i
o_

0

:_ _.4 d_ _ ,,_ ,d ,d d
I I I I I I I

_ C_l I r-I r-I r--I
I I

0

',l:)

_6
O4

_0 o_ 0 ,-I ,-t ox
,-I

_ _ 0

159



•,_ 0 o,,
_D

c_

P

m b

o
E_

o
I rj

_ .el
o _d

r--t

Z

.el

r.rlz

b

0 N

P

b N

0

.el

0 co ,,0 o',, ,--I 0 ox

0 _ oJ cO .-_ c--- ._

•,0 _ oa I I I
I I I

t I I I

0
c_ _ ,_ _ _ c_ o:,
oo _ co c--- _ _ 0 0

_} od ,-.I _ I _ ;.-.I
I _ C_l I-M I I I

I I I
I I i

C_'" _ _o _._ c'-- 0 0

I h _ _ I _ ['-,- CO

r-I ¢_1 _ _ _

ox 0 0 co _ 0 ;-_

r-'l I I I

0
,4 cJ o8 _ _A c_ o_

F-I

CO 0 Oa ["--- _ 0 _'_ 0

i ! I I I I I

•
e_l o'x ,---4 /-4 o_1 o_1 o_1

I I C_I I

I

0 r'-'l

160



o_ _

! o

m a "_v _

r-I

d

.d

0 0

o,.I O _ID _ O Ox O

tD

ON

bb'l

O

b-I
O

N

O

ID

.,-I

_4 ,4 _ ,q c_ og _4 c_
i c_l ,-I _ -..-t

_ _ -. _ _ o,--I ,-I ,-.4
I

O

O

O _ _ _ ....1" r-I ....1" 1._

,,0 _o _'_ _ 0 0 o_ _--

,'_ _ _ _ O_ _ -.-1" O

,'7 _ _ '_ _- _ '_

co _ ',0 0 _ Ox ,,0

"Lr'x 0 _ _ _

I

Ox Ox _ 0 "tax aO ,.-t ._.,q.

co ,-4 I._ o'_ 0 _I (7_ D..-
_-_ _ _'_ _ _ _" _-_

,-_ co _ ,-4 0 _ co __
_- _ .__ _ e_l _-_

ox _ ox oa _ ox ,--I

O _o o_ o_1 _ I'_ ,-_
I r-_ r-_

O co o_ 0o ox 0 O_l ,-I b_-

161



•,-I b-,-,c;
cOZ

P

bb'_

b N

_-1 .r-'l

0 Z pN

_ H _ b

B o II I1)

_ b N
o

o4 _

•el _ _.1

"o ._ b_:_
o od

Z

pN

b N

.H,og

.r4

O

_-_ o_ _ _ o_ 0 _-_

,4 ,4 _ d _ _ "_ ,-4

I _ r-.I ,-I r-,I
!

0

0

o_ _ _ c_ _ _ _

c_ _ _ ,.4 ,_ o_
I

D.- _ aO _ Ox co

r'-- ["-.- M:) ¢_1 ox oN _ co
r-I i--,I I

I

0 o_ _ Qo _- co o_

co _o _ ,-I ,-I ,--I ox co

_ ,-I o_ o,I oD ox ,-H

'4:) .--.1" _ _-_ r-I

0 _ 0 _ _ CO _

I ;-I

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _r_ r--

162



oo

0 4.,

I

r.OZ

d

.d

b _

b _

b _

.,-t

b
_r--4
o x_

• r-I II

.r-I

bNo

o b

d

r

.r-t

I

b _

I

b

d

0

0 _,_ p.- _ _ _ _ ___

r--i I

oo ,--4 0 _ e_ ,.-4 _

I H _ _ _ _ _

I

0

co oo _ _ _0 _ ,-4 _._

A

D.--

,.d
oJ
r-I

0 _o _ _ _ D.- od

_._ _-_ ,-4 r-_ 0 0 .-_

,8 d ...4 ,q ,d _4 IA
I I

......4 ¢'_ .._ D-- _0 CO

C_J r-_ r-_ C_I C_J

I I I

,-..I _.0 _ _ "l..rx 0,, _ 0

_o A d _4 ,.8 ,:8 _

,q _- ,q ,,4 _ ,13 ,4 _.4
I I I

0

oo oo r-_ r--t O0 Od _1

163



E-d

I

E--I

O_

c_

g.j

O_

HJ._
I-4

r--I

0 II

o
r.D

"o

3

,el

,r-t

.s
ID

_ r-..4

r._
iii

i

b

b

b N

b_-_

N

i

b _4

b

_N

b

b _

0

,r-t

0

0

r-_ r-_ _ _O O_ _ "U_ 0

_ _ 0 .._ CO CO

.__ _ oo r.-t 1._ 0 _ 0

d_ _ d d ,_ d d
_4

0 c_l ',,0 ce_ 0 ',0 _

t-... o',, o,I ',.0 _ _ _ oo

_ 0-" _ _ _, _ ,6
_'M I I I I I

I

0 _ cW. a_ 1._ _
c..- o,.I

I I

_,'_, _ ,-4 ee_ t,_ ,-_ 0• . . ° .

0 c_ .__ _
¢_ ,-I I

I I I

..r,-,-# c_ [_- b- co _ 0 co

I I

0 ['-- _ _ ,4D _ "u_
,--I o,1 _ ce% _ _ ¢,r% e,"%

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

16_



ca_

b

_N

bb'_

bN

z z

c/_ H b
f._ ,-I

0 II ID

co _

",_
'I_ bN

u o
r.D

_-4 b _
_ .,-I

,-I

Z

cO_z

_N

b

oN

b

.,-i

0

c_
-- _ 0 ',,0 -.1" o,I c'-.- ,-I

,-4 I I I

_ _r_ ....1- --.I --.1' --.1" --.1"

',O .--1" _ _ _ _:.1" C_ CO

0 o_ _ 0 _ _'_ s t,_

I

o',, 0 D_. o-, ',0

r-t

,--I ,--I 0',, _

I I I I I

I I I I

0

-.1' _ co

co o,, 0

i I

_I t_- oo

0 _

,4 ,6 ,A
I

c_ o'_ o_

'.0 ',O

0,.I _ cO 0 cO _O _ ' ""

c_ _4 _ ,,_ _q o,: ,,_
H C,..-- 0".,. _ cO ..--1" .--I
I _-_ H r_ I I ! I

I I I

o'x o,, -._ _ _ 0 o,, ",0

,--t ¢,_ o,, .--.1" co 0 ,-q ,-_
,-I ,.-t o,.I o_1 _ _

o,.i ,-4 _ ox ,-t o_ o,1

I I I _--I

0 0

,,0 0 _ --1" ,,0 ox "4D

t,_ 0 -.1" t_- co 0

Z6%



L)

_-_ O_

::_ E-4
H_

o
E-I -_l u
r.D 4-J

o

_ .,_

o

_d

r---t

.s

.M_d

b

b >

b X

b

_4

b

b _

b

_4

b _

b

0
_ _ ...4 _ c_ _ cA _5

_ c_ _C) _ 0

@d I I I

O0 _ CO Ox CO Ox Ox Ox

{%1 p_- _ o_ D..- C_I r-t D...-
I I I I I

_ (_J _ _-I I i
! i I I I

_'x .__ __ _ _._ __ .._

L'M I I I I I

0 "uh eo cM p'_ _0 c.-- _- __

I I I I I

r_ r_ r_ _. r'_ _ GO (30

0_1 0 _ C"" I I I

I

0 0

r-i C_l O_ Od

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

166



o_Z

II)

0

N

b

N
0

,--i _c ,._ ,,6 ,_ "_ _ o:,
_C) _ H r-I I I I

I I I I

0 ,-_ o_ o_ _ _0 .-."I _0

i I ,--i ,-,,I I l

i I

Ch,, _ O_ CO D-- 0,.I C7_

_ .H ID 0 _ 0 _O _r_ _ c_l 0
Z _ _ o r-I Oa Oa Od 0,.I 04 OJ CM

_ I r-I I IE-4 oJ I t | I
,--1

•_. _ ......_ o

o ',O _ _ _ go c,,4
• C) I I I I

o 0 o o _ ,'_ _ _ co _
-_ o _ _1 ,-I ,-.4 r--I

N
L'-'

O

b N

.H

c_,--t

I I I I I

-7, _ o -3 _, ' I
I

0 0 o,.I ',.0 co co go



o

r.D

_Z

g

0o o ._

-o _aJ
cH

c;

.H

b_

b

b _

b

P

b

b N

b

P

b

b_

b

°_I

0

'.I::) _ _-I _--I I I i I
I I I I

u

0_I _ OJ _ _ _ lad p.-

I _ I I I
I

;-I _ _ oo 0 _ 0

I r_l ,.-4 i.-4 I I i
i I I

_ ON _ _ o_ ,-4 o'x

,--.I _ _ ,--.I _ _

I I I

0 0
_-I r-I ,--I _-I ,"4 _-I

• " P'- "_D -_ 0 _ Ox
O,J ._. °

I I I I I I I

0 0 0

0 oa oJ 0 r-I co

108



_q

_q

E-4
_9

I

o_

_q

E-_

Z

O9

E-_

o
•H II

•H I:_

O
r._)

b,0

.r-I
"IO

O

r.az

r,%

c_
:z;

t n'_
.rl

ca_

Z

r-_ o,I

.r4

r--I

t r--I

[,9

ID

X

I0

IOX

O o3 -4 _ c_ _ ,,_
',,D >-- _ _ "uh O

{xI _ ',.O [--..-

O_, O-_ cO _ O',, _ _'_

-._ c{ {S _ ,,6 _4 _

! I

o,_ ,--4 0 0 _ _ co

d ,q ,q d o< _./ _./ d

! !

0

e_ e,_ _ wD _ a,, O ,-_

_ _ _ ,.O D_- D_- P--

b_
t)

tDb_

b_

--,-I" {_ cO .--I O _ m-- e,]

P'-.- O_. _ [-.- _ aD _ B,I
[-.-.- _--I B.I {_1 r-t

J I

O

co

[-._

[-._

0 0 ,--I _ _ _ "-0 m--

',0 _ a',, O ,,O O _

O'x ,,O ',.O _ _ cO aO

0 _ 0 o', _ "L_ CO 0
b- _ _'_ O C_ co D-- cO

_4 _ _4 _4 _ _
co o_ L% p__ _- __ c_ O
r-_ _ r_ _
I

_ O _ O _ O _ O _ O _ O _ O _



r.__.Rl. OK "-O

:2,c; _ _

,.ID

Z

_-q ", I::_ OJ

I--I.H.-M

Ot-'l 2_;
.H

rj_ .H

o

d _

_ %-t

r-t

b

G::) n% ,--I _ "u'X OI'M _.I' ',I:) _ r.--

,_ _ ,_ _ ,4 _ o o:,
n'_ cO _ r--I D-- _ t
I _-I r-I

O
b

cO _ CK O", '-0 O4 _ co

,,5 o-, G_ _ _ ,q
i r-I n_ n'_ O co _ o",,

t_

_ _ o,.I O O O n_

O t o,.i _ r---I r--t r-..t
r-4

I

b

D

,-I _ r-_ O _'_ Go ox

_.4 d _ #, ,,_ _ ,4

X

_ o,.1 co cm _ _m, ,-4

_>_
b

L'-.-- _ _ _ _ _ <:_
I _ _ _ _ [",-,- L'-,-.- CO

_ P--- co _ O r.q (xl

[-.- _-I o4 04 ,-t ,-t
I

_r_ ['-- ,4D co _ "LfX _r_ '4D
_O ["-- _ D-- P.- [---

b _

c_ H O _-I 04 _ _

h _ _ _ r--I I

•H b CO

,-H _-- O ',_ .-.1" -..q" ',O co
r-- _ _ O o',, co _ D--

_>_

o_1 o4 o_ O ox o',, o,1

D.- O r--- _ co _ _ o',,

i

o,I 0 ,-I b-- _ ,.0 o

-,-I

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

170



A

O

o r---t

_.1 4 J II

o
I o

N?

r,_ .r-I

N °• _

_Z

Z

,.O

0,1

d

r.rlZ

r--t

'b

b _

e, c; _ c; 0S _- c_ ,d

_ O [--- O _ _ c_

o_1 co _ ,--I D-- _ o,i ,-I
i ,--I ,-I i

O
b

D.- D.- co

_1_ ox oJ ,.-I _ D.- ,-t o_1

.--.-t _ _m O _ _ O D--
ox i od o_1 ,--I ,--I ,-.-I ,-I

I

b

O co _ID c_o o'_ ,--I ,--t _o

[_- _ _ O_ o.I ,--I ,-I O
,--I _ ...1" _O _ _

b _

_D ,-_ co O _ _ O

O
b

,,,m

t.l

b

O _D o_ o_ _O

i

O _ ox ,--I _O ,--t O

GO GO O_ oO '..0 D.- Ox oO

b _

_ _ o_1 ,--I I

O_
r_

O _ _ ..--1" c_ ox __ _O

O Go O O _ _ _ oo

,--I ,-t ,-I

_ ,6 _ _& _ c_

I

i-t D-- ,-I _ co _ _ o'x

.,-t

_ O _ O _ O _ O __ O _-x O "Lr'X C) _r_

171



c+4._::T
q-i

+a o
coz

o

II;

S:

,_ -_ o

c_

o _ _

_ -,_

! o
rJ

o .-4 •
_ ,-P o

E_

-H

b

cM _._ 0 0 _._ (M

'_ _ co _ 0 L-_ _.

c--.- [',--. _ o,I I i _-4
,.-4 .-I

b

oo L_ _-_ c_ 0 _3 oo c_

r-_ o _ _ _ _ o', i-4
l _ _ _ [--- _ b-- 0o

b N

_ co D-- ,-I ,-t O o_1

o,.I ,-I
I

_:_ O
b

b

b N

O O_l o_ o,I D- i"_ ,-t
co _ r.-I ,-I

.-..-I" co ox _ _ D- i-t om

oo _ ,-4 D.- o'x ox _ o_1

I I I r-I

o_ O ,--t co D-- f'_ P_- O

o_ ,-4 co D-- ['.-- D-- _

;4

O o_ '.(3 _ _ _ O ox

! I

b

c_ .,.(3 _ O ,-_ ox ,-_ 0o

D-- _ o_ _ _ O _ co
_O (:7., co _o P_- D-- D-- D-

b _
r-4 ,-_ I _ _-4

I I I

,-4 0 ,-4 CO 0", C_J

_.4 _ _A c_ ,8 ,8 _
o,I r-t ,-4 o-x _ O _D .__

-H

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

172



I

P-7

d
0

r.o
E-_ E-_

c-.
E-_ o II

.r-t

0

r-q _

o

-._ o

o

,.Q

_d

Od

t.-t

d

crl_

0
o'_ _ _ r--t 0", 0",

1'l

,-d _ r'-- _ ._ _ e,_ __

,d ,S _d -4" _ d _ _--

b

_ 0 ox o_ _ 0 0

I'_ _ xO _ c--- co Go

b _ 0 _ _ _ _ oo

!

L_ -

N
0
co

0

b N

0

I

_-I 0 _ ,-4 r--I ;--I

!

_ ox ox _ xO _ xO

r--I ,--I

b_

I I i

b_
b

0 b- _ .-..M" _ ab (xi

0 co a0 _ o_ _0 m-
o'x co co Go co _

b N

0

d
co

I I I
I

0
b r--I ,--4 r-I _ .-_ _-_t _'-_-

173



.M

tOZ

0
Z

,.o
®

o

HI._ z
c"

E-d -r-I _.

i 0

-_4 _
_ .r..t

0

g
Z

,.o

.M

U'_Z

_ 0
t_

o o,, "-_ " _ _ o _ _o

e_ _ _ c_ o_ c,_ "t_ 0

_-I ,.-i !

c_ 0 to ox to _ 0 -._

t_
I

_ 0
t_

N
P

t_

t_ N

0

t_ M
,-.-I

0 CO 0 _0 0_, D'-. _

,4 ,4 _ .5 ,4 _ _A .4
0 _- _ c_ ',{3 ._ _ c_

o_ _ o_ co _ o., 0

I ,-I

P ,,0 c_ I
I I

0 _ _ co 0 _ 0 ,.-I

oJ b-- _-I 1._ 0 co b.-- ,-q

o_ 0 eo ',(3

.,.-I

iTn



_ .,a,

0 II
_ .r.t
r_ O_

_ ",_"o

I o

N o_-a

b

b

b N

0

r-i i i i i I i

._ -_ _- t-- _rx _- O --_

.--I" _'_ ,4D _-- Lr_ ce_ ce%

O

o_

',O co c_

N

13_

b N

O
b

c_

N

I H I _-I
I

cO '43 cO c_

%r_ _ O c_ _-- co ,4D _-

_ _ r-I _ I I I

I I I I I

co O _ O _-_ _- o_ _-_
,4D O cO co _O _-- _-- GO

_DoO

b

C_

b N

o_ -._ ,4D c_ O

! I

0 _-_ 0 _-_ ao _- c_ 0

r_ 0_, o',, c_. r,_ ___

_ _ I I I I

I I I

_-_ ,,,0 _ _ co _ _D 0

I I I

..-I
0

.rl

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _



d

ID

[_

o _.•M I!

o
"o

I I=I
o

r-4

8

t_

t_

t_

t_

0
_s _; _ ,2, _ if, c; ,S
o_I oo o_ i_ ,-I o_I o_ 0

r-I I I I I I I

,-I 0 O'x co co co co
r-I ,-_

0 r-- _0 O_ _ i _ (x_
i i _-I

_ eXl ,-4 H I I I
I I I I I

i, -- i

r--t r-.- _ r.-- t-.-- o,,

,--4

CO D-- CO e_l O0 0 CO O_

0 _ O0 Ox ,-'4 ,-.I _

oJ 0 D.- ,-4 _0 _ xO .-_

_- 0 _ c'_ -._
r'_ _ '4:) _D _ I_- _- _0

,4 d _Z _ ,4 c:, 8 d
,-4 0 0 _ GO c_ r_ 0

q_l _ I I I r-.l

I I I I

o,; .z3 _ _ _ D..- D.--

0

,--I _0 od _
I i ,--I

r._Z.,

r

.,-I

0 0

0 _ oO _ D- Ox

4 IF, _ _ _ _ 4
¢,_ _ l.r'x _ p.-

_ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _

176



r.__=r
q.-i
.i.-i+,g

!z

C_Z

0 -_

_ o

o

p...
i'% _

•el _ t'M

o 4--, o

g

,.o

c_ r--I
rH

_r_

N

b

b N

b

N

b

b N

b

b

b _

b

.r-I

_r_ 0 _r_ _r_ _ _0 ,-4 co c_

r--I I I I I

0 _ r-_ 0 _ 0 ox ox

r_ 0 c_ 0o co co co
r _, r

0

0 0 _ co co _0 o_

i i

0

D,- --1"1 C_l ,--I I I II I I I
,,=,

_ _ 0 _ _0 '_) cO

I r-I H l I H

I l

=,.

0 _0 o_ _ _-_ _ _

I ['-- o_ cM c--- _ r,_ co
r-.I i--'l _1 I I I I

I I 1

0 _1 o,i _ _ co ox od

I I I I I r--I

0 0

C"- _ '4::) Lr_ _-- _Jm _Jm

._" r--- r-_ ",O --_" ',D
r_ n'_ _ Lr_ ,,0 ,,C) h-

o_ _ 0 "_ 0 _ 0 _ 0 _ o _r_ 0 _ 0 _

17 7



,-1

0

L_

0"_ 0 II

._p.,

.H

r,7 0

.el

0

,.o

.H

Od

,.o

b

0 x

1,4

t_

t_

t_ x

b

.H

I I I I

o_ _ o_ ¢,_ _,_ o,, 0 o,_

0 --1" 0 ,.0 _ 0 r-_

I I I I

0

0

o., ,49 _ ,-I _ o_ co 0

I _ 0_I r'-I _-I I I l

I I I I

D--

o_
0 co co _ 0 o_ --I"

D',-

--_ ,-.I" _'_ m- wD wO 0

I I I

H, , i

D--.- _ ',,,0 _ .__ 0 _ ._

D-- 0 0 _ 0,, c,_ 0
,-I _ _ 1"_ _ _ _.1.

0

_19 --.1" o_ _-_ "L_,. r--I

I

0

,-4 0_1 ,--4 0_1 0 ".19

CO _ r_ 0,, .__ ,-4

0

I I I I

0 0 0

0 od _0 _ _ ox

178



Z

0 -_

E_

0
E-t ,r-I It
rJ'J +_

! o

o

E-t

_ 0

,.0

.rt

m_Z.

b

b _

b _

b _

_N

b

b N

b

t-'

b

b

--1" _0 0 _0 _ _ o_
oo _ r-_ _-M I I I I

i i i I

co r_ _r_ o4 Lr_ p-_ @,l o_

_0 _ co r_ o_1 0
D-- ox D.--

D.- ,--I _1 ,-I co '_0 _0 ox

I

0

i C_l _1 _-t I I I I
I I I

_0 _0 co co

I I I I I

0

,--I cO _ D.- Gx _ Lr_.

_ .--1" _ i'_ _ _0
I i / I I I I

_1 ¢M cM r_ _ rr_

o_ ,.-I LI_ D.- ox .-..1" 0 ao

o_ i 0 co o_ i
I od I

-_" 0 ,-I _ I_. o_ o_1

o _ o _ #- _ _ _A o_
_ co o_ 0 '_0 o_

I ,-I o_1 _ _ r_

17_



I

o r.4 co

c_

c_
;z:

+-,
0

r_ _

0 II

o

o -od

d

t_, _'I

b N

N

b

I

N

O

_ _ 0 _o o

CO _ ,--_ I I I I !
I I I

0 "U_'" _'_ @,J _ ',0

...4 _ c_ _4 c_ _ d, _cu 1._ cM 0 ',0 @J
I I r-"( _ I I

I I

c'-- c-- 1._ _ ox _ 0

0 _ o,, r-- _ 0 _

["-- -..1' 0 _1 ox c-- c'.- 0
i _ _ r-( I I I

I I I I

0 o,, ox _ ao 0 ,-I 0

coo _ c_/ I _ _'_ c'_
I I I

0

I I I I I I I

,--I _ ox 0 r,_ ox i_ 0

I I I I

r.Q ;z_

ox r.-- "4) co ao ox

.r"(

180



Z b_

-._ r"l 0 t'- Od cO C_ @,I

I r-.I r-I I

b14

,,0 "Lrx _ oo _ ',0 OJ 0
• • • • • •

I I _ ..-1 1._ '_D h- I_-

bh_ 0

t'-- @,I (_, -_ _C) co co r,_

o_ "t_ _ 0 "t.fx .._
',0 ._ H _ oO oo

Ox I o,i _ H r-I t-'l
I

t:

r't _ ["- r-I Ox ',0 r_

6 6 ,',', oo
o,, {_- _ 0 0,, o,_ 0

H r,_ _ ',0 t'.- [,.-

-P .z_

0

r.=l .., 1,4

+
o

',0 -_ _I ao ox ,,0 ',0 0

0 _ _ _ _ cO _

.... A " A "
I _ _r_ _) [_- L_- l_- _)

["- r-I _ C_l t-'l H
I

0

r-- ox xO ',4) r.- 0 _ 0

xO c-- _-- aO _0 xO _0 _-

0 ,,-I c_ ('_ _ _ ,,0

ox _0 o_ _ ox 0
r.- c,_ Ox ox _ Ox c_
_- co _._ cu r-4

Ox _- 0 Ox co ox ox 0

_-- cu ox @u c_

R co ._ -_ 0',, O_[" _ 0 ox ao _- r--
r-I H .'-I

b _

H _ Ox ._ co ',0 _ c'..-

c-- 0 c-- r'1 cO YIX oO Ox

I

r-I r-I r-I t-i r-I H r-I _ _

181



.r-t,oc;

c;
b

•-_ _ ,.-I o,, 0 c_ ,-'-I c_
• • ,0 •

r-I r_ 'u_ ',0 ',0 _-- r-- _.-

cu ,.0 c-- 0 .-_ o,J ,'-I _'_

co co oJ ',0 ca ,-I H ,-I
,-_ ,--I I I

o.I Ox cO r-- H _ ou co

m r-_ H _0 _ _0 0 O_

o,I _0 o,, ,--I 0,, 0 ,--I ',0. . _ • ,_ ,_ • .'u'x t_- _ _- 0

o,_ ox Ox _ o'x ox

0 "u_ ox co 0 l_- o_

_'- ,,0 _ c_, ,,0 0 _ c---

b 0 ¢M H ¢u ,,0 Lrx co cu
H H i I I r-t

182



t_ o4 r-I O,I

I I I I

CO _ e_l

,--I I--I

CO rll _

CO aO CO aO

D'- CO O4
I rll

I

•

I I I

,-I

ON c,_' 0

N _ u _
_ d o. ,

.,,.a CO ¢O

_ _ b_

•H b _

o _.1

d, ,d o; _ ,4
co _ _ 0 _
co _ _ _ _

0

I

0 _ _
_ t"-- _ o,1

b N

0 _ o_ _ _-_ _ _ _

r-I (_1 r"l I I I I
I I I

0

• O_ h- _) _ _ n'_
• n, ,-I o4 r-I _ ,-I r-I

I I I I H

O

.r-I 0

c_J D-- 0 0 _ D-- D--

183



_0 '_D _ -:_ .-'.1"
cO r-! _-_ I I I I

I I I I

._ • . °_ • .o_ r- _ o_ r- c_
n,_ I I H I I

I

oo xO Ox _ o_ Ox 0 _-

• • • • • e.

I ! I

18_



| | | |

I

i

-i
o

i

iA;

l"-b,-I t"b2_ _'-b3"_ _b3_ I"-b2--I _"b,---4

F 17.S 2 5"

FIGURE FI. - TYPICAL PANEL CONFIGURATION.

185



.z-o- t Fzgzo

T'
. 0 _ _0 _D ,.,

• _. t_

1 ! r-'- --1 | !

, _ I I ! !

O _ O

® _ d _II_

o I °_.IL_ l o
t I r 11r'I t I _.

IZ' I "
.,8
o 8

t

O "_
_ o

, I
|

_ N i_.

i

!

N

I%1

I

O
m

-I m
m •
• u_

m

..I

.J

o

o
H

rJ3
I

_fJ

I

t--I

186



8.
,t
N

T
I-

Z
ILl
--I

lU
Z

W
Z
U
Z
m

z

0
m

lU

m_

o

.I

..I

0

0
H

i
cO

I

H

187



z_ro --]__ I--" _t, r o

R-_ = I,
_ 0 _ 0

d d__L_11-_i_

I I r-l-7, l

_ _1_

_ _.i_. i-_.o IO.

,o'
N

°1t
0

t-

0

_-o_

r--
!

0 _

t

I

N

-= I'

d

W
"I-

Z

Z
m

Z
0
m

Z

i

0

-I

o

o

I

H

188



L.,

m3

o
,n5

i
0

o
ml

ml3

ol5

L
°

[2_ 19,

96

4 21,

99

6_ 23

102

.8 25
- i

105

iO 27.

12 29

III

L.4 31

114

L6 33

117

? ._ 35,

20 37

120

22 39

123

24 41.

126

2_..6 43

28 45

30 47

i35

.3_2 49.

138

•3__4 5o,

141

36 53

38 55.

144

4_o 57

147

42 59

150

61

46 63

156

•48 65-

159

67"

162

,52 6_

165

56 73

.5_.8

6O

62

,64

,66

.70

L

74

75 76

77 7_e

UNDERSCORED CHANNEL NUMBERS INDICATE GAGES

OF PANEL. GAGES I THRU 94 ARE
166 ARE ROSETTES.

79'

e, e_2

e_ ,__

e5 ,_

87 88
nn i

89

=

F..

_J

I
T

9_ 92-_

b

b

I
-1

4
°

i-

93 9_l,J

T

ON REVERSE SIDE 0
UNIAXIAL GAGES. GAGES 95 THRU

0

N

FIGURE F._. - STRAIN GAGE CHA_T_ELS FOR PANELS B AND C.

189



o
_3

°

=o

o

o

o
ml5

2 19,

112

_4 2_

115

6 23

118

8_ 25

121

.l_O 27.

,,_o
124

12 29'

127

L4 3_

130

'16 33

133

.LO :_

37

136

?2, 39

139

?_ 41

142

.26 43

145

2_s 45

148

.3_g 4-/',

i5i

'32 49

154

157

36 53

38 55, 56

160

40 57 .58

163

._ 59 60

,44 61 .622

169

46 63 64.

1"/2

,4..,88 65 6_.6

175

.5_o 6_8

178

52 69.

181

,5.__4 71 72

73

7_.O

74

.75

76

,77

7e .7__9

"e_9

e__

8_

85

,e2

.e__4

86

.8_.7

as 9.._

90

91 .9_..2

.9.._]

94 95

,._

97 -98

UNDERSCORED CHANNEL NUMBERS INDICATE GAGES ON REVERSE

OF PANEL GAGES I THRU II0 ARE UNIAXIAL GAGES. GAGES III

182 ARE ROSETTES.

FIGURE F6. - STRAIN GAGE CHAN_,_E.T_,SFOR PANEL D.

O

99,Lo0]

,tO._J,+

'"t

104 10...5-_ qN
i

i

._o___6_

I

%

!

L_--_
I

°

_Os.,._0J
#

=

SIDE m
0

THRU





|
m

E _.

• Q

Z

COLD-ROLLED STEEL BAR l

t
|

|
i
),,

lU

FIGURE F8. - TYPICAL LOADING ARRANGEMENT.

192



P

/

!

I

i

I

I
I

I

*/i //, I// "/i ///,
LOADING CONOITION Z

P P

i
I

I

I

I

I

L
ilJ i/*/I/ I/Ii/I _'il,

LOADING CONDITION 111I

//

FI

I

"// r/f/

LOADING CONOITION 11-

FIGURE F9. - FOUR LOADING CONDITIONS.

193



1 

e 

0 

0 * 
U 

Y 

a . 
I) 

D 
s 
0 

(I . 

I) . 
v 

I 

0 

a 

a . 
J 

J 
n 

e 
0 

194 



iri@@-1 . 

I 
b 

i 
i 

e 

FIGUBX F11. - CONT'ROL CONSOLE. 



FIGUR;E Fl2. - FRONT VIEW OF PANEL. 



FIGURE F13. - FEAR VIW OF PANEL. 
19 7 



q qlo qll

_. OF PANEL

qm

L2

L2

L_

t5
L2

L_

L2

LI

37

3e

39

4O

41

4:'

Ili

13

14

15

45

46

47

48

49

50

2O

21_

zZ

23

24

16 25

43 51

17 26

44 52

53

54

55

56

5"r

58

59

6o

29

3o

32

.33

34

35

ql qm qt7 q_

FIGURE Flh. - GENERAI_ZED FORCE SYSTEM.

19.8



q.

.{

N

T

qzz

..1.

q3

o"

q47

I

qzo

t

w')

,T,=

u.

Y
qz!

i

j
FIGURE FI_. - GENERALIZED FORCE SYSTEM DETAILS.

199



qt

.o oo
I

0

o oI

i o
N

c_
Z

n-
bu
i
_u
u.

u_

0
Z

n-
bU

W
Ls.
U.
I

F-
u_

oo
m

i_ I I l I 0 .

I j _

_,\ 0o_ _

, w

\ _ _zz_
"8 - o _-_-_ o. ImlC/)_/)_ _ U.

Z WiA; W

L, t I I I I I I

o _ _ _ N_ __ __ _
0

S3HONI ' _ ' 0V01 O31"ldd¥ fl0B.-I 33NV.LSIQ

o

H

O

H

F-I

E-_

.<

O

I

r-I

200



d
Z

i _ i i i i i i

0
0
q.

0

S3HgNI '_' OPO1 031_dV MOB3 33NV_SIQ

I

Ul
a.

o,

w
I..,

la,i

z

c/t
ul
w

I,-
fJI

la,J
-e-

o
H
E_
H

0
rj

0

m

0

H

r_
r._

r_

r_3

!

r-t

201



//[-1
/

/
/

/
/

/
[3

L • I i i I i "

-- t
0 I_ U) O) N__ __ aD_ N N

c_
Z

W
W

0
0
eD

0
0

0
0
9'

0
0
N

0

S3H::)NI '/( ' OV07 (]31"lddlf ROW:I 3:)N¥.1.S1(]

o
I--t
E-_
H

O

,--1

C)

cO

E-_

I

,-j_,-j
Lv_-



D

/_- - &.
/ "_...

/

I-.--.----_.. # L i ,,, i, , I
f

t'_ /

o= /

III

I

/
/
i

t

r'l

I i

8

0

S
,y

..[:3

,<_ ° ---&---B"
! I !

/I , , i i

iI|, 1
I

I
f

o_

oo|_ m

r.JioM ' ,(' 0IRTI 0"dRadV N0_ 313W_

O

a

O
O

r._3

H

C_
O

O

H

O

I

203



2000 _\

I000 I _

0

y=3

\

P'I kip
TEST NO.7 o

TEST N0.8 Q

TEST AVERAGE

• ram Ii_Rummm

2000

I000

0

,. y=6

(n
ul
tu
a.

(/I

td
z
t_
u.
tl.
k-
(n

y=9

I000_ y=12

O' *

I

"" -" "" -'Q ........ --a
! I

I000 T__ y=16 ..O....... ___ ,--o

0 _ i , j

I000 Tr" y=lS "--¢,--- B

0 _ i I ,

Ioooi y=2a
0 * , •

Ik
0

IO00_ yl 23.7 O I_--- "_o-

0 _ i i j _

0 3 6 9.._

DISTANCE FROM PANEL EDGE, X, INCHES

FT._ F20. - CHO_SE DISTRZBU_ON OF STI_ NO___L
S_SS IN P_TEL B _R LO_ING CO_I_ON I.

2o)4



lwl i i I i i i I

8
II

0

, , , , , , , I o

j_'_--s "" L,r-- u----u-- -Q. -'-n- -

/f.l:] /
0

- ..0 Pt m It N_ ID._ II.. N

gH_kll '/( ' OV_'l 03i'lddV iiOMd L_Ri'_I$10

H

0

H

0
r._

L_

H

C)

F-]

0

Er}

H

r.Q
r.Q

I

_J

205



oo

8 "
qlb

z

0 I-
ff)

L.. i I I i i i i i

0 I_ qO O N _ 18 -- t
-- -- -- N N

S]HONI c _ c 0'/01 O_lllddV IlOIId ]3NV.LSIQ

0

E
lU
Z

I-I

o

t-I

o
c._

o

o

i

2O6



_ --B---8---"°l.g

l #

,. g

Ii

"Q-- -_ ..... o___n___O
£3

0
0
0

8
,11.

8
N

i I i I I I I I 0
I

#

#

-- I
0 I

Bm _

!

°Dll I

|

I

"_" "o--- .-a___o __ _A__ _o 8
m

8
t

8
el

i I i i I , i I 0

-0 I_ IP o N_ ID_ ID_ N

S]HgNI 6 ,_ s O_IQ'I Q]llddV IqOUd ':I3NVJ.SlQ

!

qrb
O.

4s

H

0
H
_-_
H

Q

o

H

rJ3
r_

r_

0

!

od

2O7



N
|

0
Z

W

0

D I

0

0

l

S3HDNI '._' (]1t'01 Q_l"ldd¥ NO_I:I Z)NV.LSlQ

H

:z;
O

H

O
O

O

H
Q

o

_q

o

H

r_

0

I

-.4

208



20001 y, 3

p : I kip
...-----"0-- .. TEST NO.6 0

" TEST NO.7 r-I

",,, _Es'r... AVERAGE---

ooo ,., " " -0
!

,ooo_y.,,_ - -- -13, 0 0

b_" O" ' ' '

I00 y" 15Or
(b ........ (]
/

I.- I000 •r y os

0 -0

i !

I:tl-- 0 C) 0
I I I

O"

I000_ y, 23.7 !° _ . -
0 _ I

0 3 iS 9/

VDISTANCE FROM PANEL EDGE, X, INCHES

FIGDRE F25. - _O_-v_iSE DISTRIBUTION OF ST_FFF_rER NORMAL

STRESS I_ PA_L B FOR LOADING COI_ITION II.

209



0

Z Q

u.
I-

' ' I i I I 0

g o

- m

_ _

n*
Id
Z
UJ
U.
u.
I-

H
H

0

H

0
0

0

0

m

0

I

S3H3NI ' ,_ ' OVO'l Q31"lddV flOEI3 33NV',L$10

210



0

lmi 0
o
q,

II

!

*- • I I I i I i I

o _ o cb __ _ _o _

S_IHgNI ' ,_ ' OVO'I O:ll'IddV WOUd 3:)N_.I.SIO

211



irl

z

m
1,1
tl

/
I

I
0

n

-8---____B___ _

I I I I I I I

CM
ci
Z

in
!.1
}I

i_ "_"---- - - _--- 6t---B

I, I

i
I

ODW

c_c_ w
_zz_

-
ci
=" .,0"
ID s
W f
• D

f
f

f

0 irl ID

I I I I I I

i i i i i

g]H:)NI ' ._' OVO"I O:ll'lddV flOlt:l ]ONVISIO

0
0
0
m

0
0
Q

0
0
q.

o
o
N

0

oo
O

m

oo
q.

0
0
N

0

0
0

0
0
q,

8
N

,t o
N

H
H

O

H

O

r_

O

O

I

_l_



IJJ k U_

0
0

0
0
N

0

, o
I N
I 0
I

N
I

0

o _-:-_-_ , , ,_ , _-(_ 1 o

[] 1o

I i I I I & I I I0 It') qO m N m
.... _

S]I'IONI ',( '(]Rt'0"I O3nddV fl0tl:l 3:)IWJ.SIO

I-I
H

O
I-t

1--1

O

P_

O

H

E-I

A

I

213



_r p
/ TEST NO.6 0 .."" " - _,.

I000 _ TEST NO.7 17 ., ,. ," " •

/ TEST AVI[lU41[I- -,, " # ""

o_ ....... ." _,

O_r --0 .... "
_ _ .g, 4.row .ira t,=* JR *_* I',R ,ml,

....... a--- y,s "'0
0 IkilJ"" "m I I I

'°o°°I_ .,---
....... Q ......... 0

y,s
I I

_ _(] ........ 0

I i

y,12
I

b.

(n

- --o - --0 o

0"- y'-ISI I I

(3 ..... y " 2.3.7
0 I ,

O 3 S 9/

VDISTANCE FROM PANEL ED_ I X l INCHES

FIGURE F30. - CHORDWI_E BISTRIBUTION OF STIFFENER NORMAL

STRESS l_*_PANEL B FOR IDADI_G CO_ITION III.



2_5



o 0

Zt [_)_ ' i I i I i I
oo %

• i I i i | | | I

S3HgNI ' _ ' OV07 Ci317ddV flOl:l.I :IONVISIQ

0

oo
T

oo

oo

oo
T

oo

?,
,p,

oo

?

0

oo
'T

oo

I

0
0
m

0

0
0
"T

m

¢n
0.

a,

aB
LU

Z
m

I-
Ul

Z

w
Z

o
H
E_
I-t

o

o

r_

r_

r_

!

c_

216



8
/ 0 \\

I' \ g
I \0

/ \ o

I_ o\\ "f;[ o

O i i_ ........ _1"
z , 0-- -D- --_

Q Z Z _ 0

" I_I l,d III 0
l&, I-- I-- I-- 0

I I I I I I I I 0

o _
. _.--_..... __._o__B _ _-

,,//,_" o 8 6"

ii/ o

I _I_ I I I I I I I ' O

g .__---a- -_ 8
" ._4_ o I"

....a / o

o__ o

S3H3NI '/[ ' Or07 O317dcN flOkl.,4 3:)NVISIQ

o

H

O

O

H

O

H

E-I
r_

O

I

r_

217



1,1
d
Z

m
I¢1

Z

ID
1.1

I

\
\
\
\

\
\n

o\
\ D

\

rl ._

0 0

i i r-I

I
I
I

OOw

sO i.,. m"

.w

i_1 ill ill
a- I..- I... I-.

' .... 2--'m
r"l

,,_1_

o

0
Z

0 0

_- -- U "L,m /

0

, , 0 .... &_

0
0
q.

0
0

0
0
N

0
0

0

0
0
m

|

0
0
N

!

0
0
N

0

0
0
T

0
g

0

0
0

I

o

H

0

r_

[---I

r_
o

I--t

r_
r_

0

I

._.4
Fx_

I I I I I I I I I

o ,,, _ 0_ __ _ __ _

$3H3_1 '/{ ' (!_01 C]'.Jr'lddV I_10_1.1 3:)N_f.LSI(]

2IS



ZOOO

iO00

0

P • I kip

TEST NO.6 O y•3
TEST NO.7 I"1

TEST AVERAG[---
f

.,4=
f

/ y'6

#

,ooo 
y'9

_-- --C]....... "[]

| !

_ I000]_
y,12

-- -- -- 4:] ........ 12

Ul
LU

'°°°I y.,s
| o--'= 9 ", _,

q]___ n----- -u
O 4 , , i

m°¢I y; 23.7

0 3 6

DISTANCE FROM PANEL EDGE , X, INCHES

FIGURE F35. - _ORD_SE DiS_PJ.BUYION OF STI_R I]OP_LAL
STP_SS _! P_L B FOR LO_ING C01_DITION I-_T.

UJ
Z

.J
a-
tU
I-

.[] zlaJ
, O

V
219



!
/

iooi

.8

§

8

L i i I i , i i 0

o ,._ o o N ,9_ g _ v
N

S3X::)NI ' j( eor0"1 o_ln_v N)hLt 3::mVJ_0

O

H

0
o

0

H

C_
0

o

H

H

r_

E-4
r_

0

I

,S

22O



o

H

0
0

m

Q
S

o

o

i

S3H3NI 6 ,_ , OV01 O:ll'lddV ViOHd ":I3NV.LSIQ

221



It)

c_
Z

CD
ILl

tM

c_
Z

m
llJ

--.
O
Z

m
kLI

.8-

..C] S

_. 0

--8"
-13 - - "8

I I I I I

..0"
S

/

.... _ E] ""

0
-- Fi-- "0" - -rl

I I I I I

n

-0

I

I
on,

_0'1{

o.o

I rl_ o. I-. I- I-

0 " "13.

0
0

O
O
_1"

O
O
t_l

O

O
O

8
I1"

8

O

0
0
m

0
0

g
q,

8

i I I I I I I I 0

0 It) _ _ N _- __ N _1

S3H:)NI ¢ ,(((]VO1 o:lrlddV INOU..-I 33NVISI(]

m

t_

o

H

C_)

o

H

r_

03

O

I

08

222



. -,'-"'--,---,---.-_.
i ' J"_J I i I I I a

I'_ El

6 t
z /
m /
w I I
}i i

I On I

-
0. I-

N "8" " Od
Z

,it i,, I/ILl
}l t

!
I

I

I

B

Fr, , -a..., -t_- -,_n_.___ T-o

n

s
O

8
N

I

O
O
SiP

I

0
0
ql"

8
N

0

0
0
N

!

0
0
_1"

|

_ oo

- " - 0

o
N

|

I I I I i I I I l

-- q.
0 I_ ¢0 @_ N_ II1_ m_ N N

S3H:)NI ',_' (IVO'I (13rlddV flO_l:l 3:)NVISI(]

i

o
I-t
E-,
H

0
c.D

IM

S

o

o

r_

!

d,

223



ZOO0[ P'lldp

TEST NO. 9 O
IO00T" -- TEST NO.I0 0

J "_ " .. TEST AVERAGE - - -

o/ .....

,o_...._.____? ..... _Y'_'__,........

0ooor
....... y,9

o/ -'9 ......... _......... -

o / ......... n ........ [7......... c7

IO00_ y,I5

0 ------ .... 0 ........ D ........ []

IO00[ y. IO

o? 71 ? ,_

I00¢ I y,21o ? --°, P

i_ y. z3.7 i
0 1 m i

0 :5 6 9/

VDISTANCE FROM PANEL EDGE , X o INCHES

FIGURE F_O. - CHORDWIS'E DISTRIBUTION OF STIFFENER NORMAL

STRESS IN PANEL C FOR LOADING C01_ITION I.

22)4



o . . . ._ __ ®_ _ t

H

0
H

H

0

L_

S

o

H
E_

I

gH:)NI (,_60V0"1 03"lddV llOIt4 :J:)NVJ.SlO

225



oo

t"• o
_"°_--_-, o

I°°i
i

\_ -.=_= o°
= "r lu ,u .- q' •

I , E
' ' * ' 0 _m

1

!

i i i i ! i I I /

0 I0 ¢0 0 N m 0 -- t
-- _ _ N N

.l-
f)

S]II_NI ' ,_ ' 0VO1 O|l'lddV INOHd ]3NVISI0

H

O

H

O

O

i-t

O

I

226



f
• h, • I I I I I

8"

N

|

I I I !

-n-__o______-_ --'0

I I I I

8
sO

o

I
I

oo|

8
q.

.8

o

i I i I I i l i i_i

S3HONI * _[ ' _1)_3 o:lnddV W0tld 33NVJLSIQ

m

co
n

4b

H

O

H

O
r_)

H
Q

o

(D

_D

i

M

22?



I@

m

0

,, .__.....__..
• _ ! I ! I •

0 n
I 0 0 0

I

I

I

I

I
I

I
I

I
I

I
I

o1"11

0

8

b't
oo lij m,unW

0., I-- I-- I--

8

,, o.....0 b", i . , i n , . i
f 0_"" --U.---""- 0

_. _O..s 0

0 0

0
l
0

I o
I s

v I"0
z l 0 O_

l o _--
• l " 0

L I. I i I n ' --

• _ -- 6- I I I

_0 .._ --. 0
0

o

0
0

0

H

o

I-4

0

£

0

a

CO

E_

!

L I I I I I I I

SYHONI ' ,_ ' OVO"l O31"lddV NOUd 331W.LSIO

228



I000

5OO

0

f
f

f

y,S

s ... 0 .-.
s

s"
J

P "I kip

TEST NO.8 O

TEST NO.9 []

TEST AVERAGE---

"[_ ....... r?l
I

O
-- _Q ........ [;1

! i

" " -"_ ....... O

I !

O ! ....

5oo_;__-5"
Ol

°I'" _.,o
0

.... Q--- D

I I

n ....... _ 0

! I !

-- -- --_ " 0 ........ 0

i I ..J

'°°I []y 2a
0 _ , _)

0 / ! ! J U

0 3 6 9/

VDISTANCE FROht PANEL EDGE , X ,INCHES

FIGURE F45. - CHOR1])WISE DISTRIBUTION OF STIFFENER N(_/_

STRESS IN PANEL C FOR IX)ADZ'NO C0_DITION II.

229



S3HgN| ' _ ' 031"IddV MOW:I 3:)NVZStO
230



N

|

• i i i i I i I
-- t

O I,_ Q Ot N_ m_ O_ N N

S3HONI" _( '0¥0"1 0|11_1¥ NOHd II:)NVASI0

i
==

I-4

O

H

O

_-[

S

o

O

I

231



•.-0 '_ .,,

II

N

II
IU
II

L i I I i i i i

I
I

01.11

8

0

.o;I

_" "_"'°---o---o---o --'_ 8

' I I I , i I 0

_... _.-- c-- -i_-- -I_
,,. _ .....,, _0-.- '" _

. []
s

L _i I I i I i I I

0 IQ qD m N f) t

St1.13NI * j_ ' QVO'I O]ll'lddV IN01dd ]I3NV.L.SIQ

O
q.

H
H

O

O
L_

O

O

H

r._

E-,

O
:z;

i

232



!
1
0

1

- !m
I

m

|

OQo
!

_ , , , , r_ f
0-'-0---_---u-- "_ 0

0
I I I I i I I I I

0 In Q a _1 ID o _ q'
m m e

$lH_ll' ,_ ' l_0"1 Qilldd¥ ll011d IONYLIIQ

H
H

P_
O

H

H

O

i.-]

O

[-i

O

I

P-i

2.33



O

P:l kip

TEST NO.8 0

TEST NO.9 Q

TEST AVERAGE
/

f

f
S

/

_0 m
S

y,3 b

! I

s

I

_o[ mjm_ .,,m

y,s

I !

_ __o_......0 o_" y'12o

b_ a i i

......o........° ,. °

500

ot

......[].......° ,.
°i

0
I

3

DISTANCE FROM

m

y" 23.7 kd
I , U

PANEL EDGE, X , INCHES

CHO_DWISE DISTR_BUTI0_ 0_ STIFFENER NORMAL

STRESS IN PANEL C FOR LOADING CONDITION III.

FIG_ F50.

234



rj

0

r_

!

235



|

I

o
H

I-q

8

H

r.D

O

I--t

r_

r_

I

_4

| I I ! ! ! ! I J
_ q.

0 m ID O N_ m_ O_ N _1

S]I,13NI ' _ * 0¥0"1 Q]FIddV NOHd 'J311¥LSIO

236



237



0

0

L * I I I I I I !

0 I_ m O N m i

$3HONI ' *( o OVO'I 031"lddV PlO_I:I 33NVIS10

o
a
E-J
[-t

0
0

0

£

o

o

I

238



IOOO

600

or

y,3

P" I kip

TEST NO. 7 0
TEST NO.S E]

TEST AVERAGE----'-

--_-- _ aim m _" I

J
f

/
J

_ atom _i, _ _ _ m _mb "emm
I !

so0] y .......- -- ¢)
O ..... I I

5oo|- y. ,z _ __ _¢

o,........ -i-°
! i'"'_ o- ...... °O"r' ...... I -m I ,

soo [ Y" is _ _ ....... o ...... o

o_...... , , - ,

.or _ |J,"" _ _,...... -?,- --,-,_
0 "t" .... m-- I

o m m _ m m i m _ m

o_ o ---o--- o,/;
DISTANCE FROM PANEL EI)@E, X ,INCHES I/

),
FI_ F55. - CHOI_O_rISE DIS_ZITIO_I OF STI_I_ }_Ot_L_J_

STRESS IN P-_ISL C FOR LOAO_IG COI_ITIOi'i IV.

239



I

0

240



l, /
' I I I_, _..s

0
z

m
lU

L

0

I
I
I

8
O'J
IL

N

0 "

'tB
8
o z
!

ILl
a,
I--

O
Z
i

kl
,i-

S31HONI' J[ *OYO'l Q]l'ldd¥ ROIdd ]ON¥1SlQ

o

H

0
0

0

0

o

H

r_
r_

0

!

>1

2)4:]_



ml
c_
l

I
Id

S

I
/

! I

S

i ! I I !

N

I

I
IAI

m

I

II

s

/
/

Ii
¢

I
!

!
I
I
I
I
I

<l

/
/

\
%

S

I I I I I

<1
!
!

<1

W

,ll

m

_ W

L I I i I I I I

0 It1 Q 0 N I1 m w

S3H3NI 6 ,_ _QVO'I Q31"lddV ROll 33NVJ.SIC!

0

g
III

0

0
0
m
m

0
0
0

g
m

o
,if
N

L

0

H

0
0

H

0

H

I

2L2



I

0
Z

OD

N

Ci,
Z

nO
Id

n

c_

_L

/
/

i ,p I

<1
I

!
/

!
I

I
I

I
!

I
<]

,,<]
/

I
I
I
I
I

I
I
I

<_

/

I

I
|

I

I

<1

,,<!---<]...

| I

-.<]. I<:1
"" -<1- - -<:1""

i i I

0
I0
N

0

9
I i

<:)

.__,_
_,m I_,
--_

,%
%

_ <1- -<1- . t
I I I I I _"_ i

!

N

0

%

I I I

0
If)
N

!

0
0

!

0
jb'}

I,,,-
|

0
0

N

0

i
(/I
O.

0

I-I

o

0

S

o

o

H

0

I

b I I

0 m

S3H:)NI " _ ' QVO"I

I I I I I

0 N ii1 m
_ _ N

O31"lddV 1tl01:1.1 3:)NVISI0

N

2_3



3OOO_ P • I kip

2OOOI _ TEST AVERAGE A- --i

I000 %"...

I y'3 "..
[ A- ._...__

0 1 , .... _ ...... A

g" ,
•j t y', _----....

[ y.,, ...... A .-ZX

lO00Ac.........

T A -A -Ay- 15

0 | I I #

,ooo+ i- A ,A

Oi y'IO a j

,ooo _.....,.,.
0 i ' z

,ooo_
--y,,_, _ _- _/O-- I ,

0 3 6 9/

VDISTANCE FROM PANEL EDGE, X, INCHES

_'_Gt_E F60. - CH0_SE DISYI_ZBU_0N OF STII_'_N'ER N0r_L
S_SS IN P_L D FOIL _ZNG C0_ITION I.

2_



H

H

0

0

0

i
w

S3H3N! " J_°OV0"t 031_lddV r,101:l"l '30NV.LSIO



o o

I : -' ' O

0

o
H
E_
H

0

0

H

C_
O

A

0

0

I

| I I i I I I I l

0 re) ¢D 01 (_i_ __ oo_ od N

S':IHDNI' _ 'QV01 a':ll'lddV I_0_-i 33NVJ.SI(]

aLL6



Ill

Z

nO
Id
31

/
/

/

I

s

<:1_
/

f

$4_ S

.. -<:1"---<1" --<i

I I I I I I

N

Z

m
Id

a
m

/

I

I
!
!

<_

!

II

I, I I j I I I I I

t "<:!"- --<]---<l-- -<l
<1

t I I I I I I I

0 _ g O N m m N

$]H:)NI 6 _ 6(]VO1 031"lddrV ROlt=l 33NV1SI0

O
0
ql"

8
N

H
O

o
m
E_

H

8 o
UP

A

O

o
G

8 ° o

O

m

o8
I

8
ql"

8
N

q.O
N

2_7



II
lU

i

I

I

I

!

!
I
!

<_

<_
J

J

I a • ! I I

I
I
I

<_

8

0

8
!
|

-.=_I

li

I

i | , , ..- //'_1%%1 I _f_ I

J

I

0

8_

a

0

H

0

0

m

£

0

rJ_

r_

0

I

.-.4
',0

i I I I I i I i i

-- q.

$3lONI ' _ ' 0VO'l 031"1dd_ ROIL_ 33NYJLS10

2_.8



2000

mOO

O

J

f %

y'3

P • I kip
TEST AVERAGE A- - -A

_aD

I

A
1ram i w

i

_ O !

IOOO

o

E
Ii/
Z
lU
Ii.
Ii.
m

i-
ra

...... Zl ....... A_
y,s

i !

Z_

I

A -A ....... ._
y,12

I i !

IO00z__ _ /_ ....... ,_ ....... ,_

o[ y, 15 i i i

I000/- _A -A

T y, Ie
0 I I I

Z

• 21 _)
0 I i !

..oo_ _ A
oi- - Y"_-'- -, - -_,

0 3 G

DISTANCE FROM PANEL EDGE, X , INCHES

FIGUP_E F6_. - CHOP_DWISE DISTRIBUTION OF STIFFENER NORMAL

STRESS IN PANEL D FOR LOADING CONDITION II.

W

Z
IU

249



I

<]

I-J
H

0

I-I

0

0

S

0

_J

0

I

S3HONI * ,_ ' QVO'I O31"k:ldV RObl:l ]3NYISI(]

25o



o
Z

m
kd

<]
I
I

I

I
, _i_<_-_?- - -<,I-

0
0
ID

0
0
q.

0

N
c_
Z

m
lU

I

4[<

g
m
|

/

m

W
m.
l-
If)

0
Z
m

I

T

--.
0
Z

i , , ! i | 0

I i i i I I I I I

0 m o m c_ m e _ ql"

0

g
q.

!

S]I'ONI ' ,_ ' 0V0"I 0]l'lddV W0U.'I ]_)NVISIQ

H
H

O

H

O

H

o

A

o

r_

r._

r_

i

25]_



t'<a""<3

i I """<L..,. ...

I <3 ...<]_. _<1__ -<I
!

R

I I ; I I I , I I I _

/,," -- -_1.. __<1,..._<1

u kd

*-'-

t. I I I l I i I 0

Iii

0
Z

Sf

S <]

/
/

/

0 I_ sp

<I"

.....<:).,...--<::!"""_
s
8
0

S

8
N

t i m I I 0
-- ql"

N in _ N N

$)H3NI' /[' 0V01 031"lddV NOH.I 30NVISIO

I--J
I--J

O

I--I

C)

L_

C)
F-I

C)

C)

r.rj

E-4
r.rJ

C)

I

,,(9

252



l
l

I

I

l

I!
, , %,, ,

\ 'o/<_'*'_ _'"

\<_ ,, ..<_s l

I
i I
I

I
I

I

I
I
I

t
l ,,
l n.
l J

, _ I _ i i, - i 0

<].. -.-<I"

N

z

In
Ii/
}m

8
m

|

I. I I I I i I ., l I
-- q,

0 IQ ¢D a) N_ m_ I_ N N

li]HONI' _ ' OV0"I O]llddV N011d ]3NVlLSlQ

H
H

O

H

O

H

o

A

o

r_

r_

(2?

I

d,
",D

2_3



1000

OL

P'I kip
TEST AVERAG(

A .A

/
/

S
J

I I

00_ _

0 ,.t .......,. ,.. ,-.- "" ""_

--A

i J

,ooo_y', __-A-
_ 0 /'" "- I I i

° ........ A

,ooof......... A ....... A A

T y,IS
0 I I I

,ooo_ _- _ _-y .zl _<
0 I i i , IL.

• 23.7
0 1 , i

0 3 6

DISTANCE FROM PANEL EDGE, X, INCHES

O

;..=.
(.1

Y
FIGURE F70. - CHORD]'glSE DISTP_IBUTION OF STIFFENER NOP_L

STRESS IN PANEL D FOR LO'ADING CONDITION III.

254



H

P_
0
P_

P:I

i-a

0

r_

2:
H

r._

O3

0

!

[,,._

$':IH3NI ' ,( t OVO'l (]'-Jl"lddV NOU-I 3:)NVI$1Q 2_



I I ! I I I I I I

0 _ o o N _ e _

S]H:)M ' /[ ' (NO'l a]llddV WOOl ]:)NVLSlO

H

0
H

H

0

0

H

r_

N
r._

!

d
p.._

256



%

I %

! l
<I

?
I

I,
o_

•,t i..
--m
,, ILl
I.l--

%

%

-<}-- -<l

|_ !
I I I I I

N
c_
Z

E
J

J

I
I

I
!

i _'I I I

i<I"" "<I- -- <I---<I-- - <I- " "<_

I I i I I

m

d
Z

|

j,

.- -<l- --<I

J

J
d

• _ -_" I i i i I I
O _-Im '1 l C/_ N Icl I

63H3NI ' _ 'OV0_ O31_dV NOU3 33NV1610

O
_')

O

0

t'U

0

N

0

o

o
r..)

r..b

S

(D

A

0

I--I

Ca

0

I

D--

F_

257



It)
ci
t

c_
Z

L

a

gO
Ill'

<_
I
I

I

I
I

I
I

<I

I

I

I

I

I
I

I

I)

I

\

I

I

,...,

,,Id

n

I l n

%
%

-_... _._-"

/

J

I I I i I

<4"---<T" _ I

I

/
I

I

I
I

I

I

' -'_ I I % I i
FI %

J
I f I

,,<3

<]
/

8

l

m

8

o

J:
8

o

|

i I i I I i i I i

0 lel _ 0 c_l In W C_l N

o

a

I-J

0

0

I-4

o3
r_J

0

I

_I.IONI ' _ ' a_O"l Q]l'lddV IqOIdd ]3NV.LglQ
258



)
20O0

IflO0

tO00

P • I kip

TEST AVERAGE

_z_ _
y,3 .- ..

I

f
J

Z_
/

!

/
/

/
/

OZ

I000 ..A

5OO
y'6

..A _"

s

_'{__ ; .;.---A ....... A__ A
0 I , ,

y'210 I ,

Z

s_ zx _ zx _
y • 23.7 I-

Z
0 , ,i, i ,,,

0 3 6 9o
,/

DISTANCE FROM PANEL EOGE, X , INCHES V
F

I_GVP_ F75. - _0_ISE DIS_BU_ION OF S_J_-_R N0_LL
STI_SS IN P_'_L D FOR LOADING CONDITt0N IV.

259



D
APPENDIX G

COMPARISON OF SEVERAL ANALYTICAL SOLUTIONS TO

THE SHEAR LAG PROBL_ WITH EXPERIMENTAL DATA

By Dennis M. Rigsby

The contents of this appendix were previously submitted as Progress Re-

port No. 5 for NASA Contract NAS8-11155 and were also submitted as a

Master's Thesis in the Department of Aerospace Engineering of the Univer-

sity of Alabama.
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D
APPENDIX G

TABLE OF SYMBOI_

A

A F

A L

a

B

b

b
c

b
$

c

D

e

E

F

G

I

k
x

k
Y

k

L

M

cross sectional area of stiffener, in_ when used with a sub-

script. Also used as an arbitrary constant in Appendix C.

2
area of flange, in

2
area of stiffener, in

one half panel width, iu

arbitrary constant used in Appendix C

distance between stiffeners, in

distance from centroid of flange to centrotd of areas of re-
maining stiffeners, in

distance from centroid of flange to centroid of substitute-
single stringer, in

constant

d
differential operator denoting_

base of natural logarithms

Young's modulus

end load used in Appendix B

modulus of rigidity

unit matrix

dimensionl s_ 3 parameter used in stress function solution,

kx = (1 + _)

dimensionless parameter used iu stress function solution,
%y

ky=(l +%-)

parameter used iu minimum potential energy equations, Appendix
Gt I/2

8

length of panel

coefficient matrix used in differential equation solutlon, Ap-

peudix A
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m

n

0

P

P
0

P
X

P
Y

q

S

t

t
X

t
Y

T
0

T
Go

U

A F

in minimum potential energy solution,

ak-'-'_in stress function solution
x

number of stringers in half panel or when used as s subscript it

represents the number of the stiffener or panel under considera-

tion

origin of cartesian coordinate system

applied axial load, pounds

uniform stress at infinity, psi

average normal stress in direction Ox, psi

average normal stress in direction Oy, psi

shear flow, Ib/in

circumferential distance

thickness of sheet material

area of reinforcing material added in direction Ox, per unit width
of sheet

area of reinforcing material added in direction Oy, per unit width
of sheet

end load, ................. poundsuLt_ LU_t_C_O. _o_uL_on,

load at infinity, pounds

strain energy

¥

8

en

variable used in stress function solution

angle of rotation, stringer-sheet solution

shearing strain

normal strain

0.04712

roots to transcendental equation, stress function solution and

stringer sheet solution
9 9



parameter used in differential equation solution

Po_i_se_*s ratio

ratio of circumference of circle to diameter, approximately
3.1416

normal stress

shearing stress

stress function

variable used in minimum potential energy solution



COMPARISON OF SEVERAL ANALYTICAL SOLUTIONS TO

THE SHEAR LAG PROBLEM WITH E RIME AL DATA

By Dennis M. Rigsby*

INTRODUCTION

Shear lag is the term commonly used to describe the influence that

shearing deformations have on the stress distribution in sheet-stringer

types of construction ----_2]1. Experimental evidence has shown that the

stress distribution in sheet-stringer structures subjected to bending

cannot be adequately predicted by the elementary flexure theory. The dif-

ference between the stress distribution predicted by elementary flexure

theory and the experimentally determined distribution is due in part to

the fact that the theoretical assumption that plane sections remain plane

after bending is not satisfied in sheet-stringer structures. If plane

-_ctie_n__ remained palne after bending, the sheet between stringers would

have to have infinite shearin_ rigidity, i. e., no shearing strains. Since

the thin sheet between stiffeners actually has very little shear stiffness

and the sheet suffers large shearing deformations under load, the assump-

tion of infinite shearing rigidity is not satisfied in this type of struc-

ture. As a result of these shear deformations, the stresses in the string-

ers are less than the predicted stresses. Since the stringer stresses lag

behind predicted values, the effect has been d_s_rlbed a_ _hea_ lag.

Thus, the problem of the stress analyst is the determination of the

stress distribution in box beams taking into consideration shearing strains.

In a hollow, rectangular box beam under pure bending, the surface under

compressi°on behaves as a flat, stiffened panel subjected to an axial com-

pressive load. In this appendix a flat stiffened panel under axial load

has been investigated.

i ,,,

_Graduate Student in Aerospace Engineering, University of Alabama,
University, Alabama and Graduate Research Assistant for NASA Contract NAS8-
n155.

iNumbers in brackets refer to references at the end of this appendix.
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Survey of Previous Work

Although many investigators have obtained solutions to the shear lag

problem, all of their solutions appear to have shortcomings. Because of

the simplifying assumptions made, some of the less rigorous solutions are

valid only for certain special cases, while some of the more mathemati-

cally rigorous solutions are quite cumbersome to apply.

One of the first investigators in the United States to give much at-

tention to the problem was Younger in 1930 _30] • He presented formulas

for the efficiency of a box beam with walls of uniform thickness, which

may be considered as the limiting case of a large number of very small

stringers. His analysis was limited by the assumption of a constant cross

section.

Many investigators attempted to solve the problem by first deriving

the differential equations of equilibrium of either the stringers or the

sheet material and then solving the equations for the stresses by one of

several methods. Winny _29], one of the early British investigators,

obtained a Fourier series solution to the differential equations of equi-

"_.:_-:_,.---v_^_*_^_.._........._+_o__ +.b_ _k_n between the spars of a stressed skin

wing. Kuhn[G20_ prpposed a numerical integration type solution for the

differential equations. Goodey [G13S solved the differential equations

of equilibrium of the stringer forces using the minimum potential energy

theory and the calculus of variations.

In 1946 Goodey _13S published a comprehensive series of articles

each concerned with some aspect of the problem of shear lag, or stress

diffusion, as it is known to the British. n_o ,,,_..,aof approach req_!red

the determination of a stress function for the particular system under

consideration. The stress functions he obtained led to expressions for

the stresses which are difficult to use; however, his expressions based

on the minimum potential energy theory, mentioned earlier, are very easy

to apply.

Borsari and Yu _3] conducted theoretical and experimental investi-

gations of the distribution of strains in a plywood sheet-stringer com-

bination used as the chord member of a box beam acted upon by bending

loads. The theoretical solution was obtained with the help of the prin-

ciple of minimum potential energy and certain simplifying assumptions.

Strain measurements were made on a built-up box beam by means of elec-

trical resistance strain gages. A satisfactory agreement between the
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theoretical and experimental strains was reported.

Fine _lOS developed a stress function for the spanwise stress in

the flat surface of a box beam under uniformly distributed transverse

load. He compared the stresses obtained from this solution with those

predicted by the stringer-sheet solution. The two solutions were in

good agreement.

Kuhn _19] proposed a solution based upon the use of a substitute

single stringer in place of the actual stringers. It was necessary to

use a successive approximation method for locating the substitute single

stringer. In view of the approximate nature of the solution, Kuhn con-

sidered the successive approximations an unwarranted complication. For

this reason he developed an empirical one-step method to locate the sub-

stitute single stringer _20] . For the empirical determination of the

location of the substitute single stringer, shear strain measurements

alongside the flanges of three panels of constant section and two panels

of variable section were used. Two panels with tapered flanges and a

small number of stringers were also investigated. An empirical factor

was chosen based upon the comparison of these tests with theoretical

strains predicted by the substitute stringer method. The resulting so-

lution permitted the analysis of multistringer panels with very little

computational effort. Results of this type of analysis were good and

the method found Wide acceptance in industry.

Akao _l] proposed a stress analysis of a rib-_iffened plate based

-._ponthe u_e of group_ of orthogonal o+o+_11_r _d_t___+e force func-

tions. These eigenfunction groups are presented as finite difference

equations.

Several investigators have made experimental studies of shear lag.

White and Antz _28S reported an investigation _ade of the stress distri-

bution in thin reinforced panels. Test specimens were constructed of

Alclad aluminum sheet reinforced with extruded bulb angles. Results were

compared with strains predicted by theory based on the differential equa-

tions of equilibrium of the axial forces in the stiffeners. Agreement

between experiment and theory indicated the method was well founded.

Lovett and Rodee _21S conducted an experimental investigation of

two beams composed of I-sections connected by a stiffened sheet subjected

to a uniform bending moment. The result of the investigation was the
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determination of an effective shear modulus for the sheet in the sheet-

stringer combination. It was found that the modulus decreases rapidly

under light loadings from the elastic value to someother value depend-

ing upon the sheet thickness. The thick sheet gave higher values of ef-
fective shear modulus than the thin sheet.

Chiarito _ reported the results of tests madeon two aluminum
alloy box beamswith corrugated covers. Angles formed from sheet were

used for corner flanges in one beamwhile extruded angles were used for

the corner flanges in the other beam. Electric strain gages were used

to measure strains in each beam. The experimental results comparedfav-

orably with theoretical results obtained by the substitute-single-string-

er theory.

Chiarito _] also reported the results of an experimental investi-

gation of two box beamsloaded to destruction in an effort to verify the

shear lag theory at stresses beyond the yield point. An open box beam

made of 24S-T aluminum alloy and steel bulkheads was used for the tests.

The theoretical and experimental stresses were in good agreement.

Peterson [G24] reported the results of tests which were maceon a

bemmhaving more camber than is likely to be found in an actual wing in

order to determine whether the substitute single stringer theory might
be applied over the entire practical range o.f camber. Results indicated

that the elementary theory overestimates the maximumstress and the sub_

s_i_u_e-_i_gle-stringer theory underestimates it.
In -_'$_^_ +_ +h_ _r_]v theoretical and experimental solutions

already mentioned, someeffort has been directed towards an analog type

Ne_on _23] in 1945 and Ross [G27] in 1947 proposed a solu-

tion based upon the analogy between the dist_ution of stresses in flat

stiffened panels and the distribution of electric current in a ladder

type resistance network. The application of this method is limited be-

cause the panel must be divided into a finite number of bays having con-

stant stresses. Results of this method were reported to have good agree-

ment with experimental data.

Goland LG12] established an analogy between the stress flow in flat

stringer-sheet panels and the plane potential flow in an incompressible

fluid. The author did not give numerical examples or experimental veri-

fication of the method.

The use of a mechanical analogy was proposed by Kuhn [G16]. Here,
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again, the division of the panel into a finite number of bays limits the
method.

In the investigation of the bending vibrations of box beams, it is

first necessary to determine the shape of the deformed beamdue to a stat-

ic loading. If the effect of shearing deformations are ignored and the

elementary theory is used to predict the mode shapes, the predicted na-

tural frequencies can be greatly in error from the actual frequencies.
Davenport and Kruszewski _ found that by using the substitute-single-

stringer method in calculating the static stresses and deformations of

the beam, the resulting calculated natural frequencies and modeshapes

were in muchbetter agreementwith experiment.

Purpose and Scope

The objectives of this study were: (i) to consider several of the

existing analytical solutions to the shear lag problem, (2) to apply these

solutions to a panel with particular properties and loading conditions,
(3) to solve for the stress distribution in the panel, and (4) to compare

the results of the various theories with experimental data for the same

panel with the main objective being the determination of the best method

of shear lag analysis.

The following theoretical solutions are treated:

Appendix G1 - Differential equation solution.

Appendix G2 - Minimumpotential energy equations.

Appendix G3 - Stress function solution.

Appendix G4 - Substitute-single-stringer method.

Appendix G5 - Minimumenergy solution using matrix methods.

COMPARISONOFANALYTICALSOLUTIONSWITHEXPERIMENTALDATA.

Experimental Data

Panels B and C referred to in this appendix correspond to panels B

and C in Appendix F. Details of the experimental procedure, data reduc-o

tion, and construction of the test panels are given in Appendix F.

Differential Equation Solution
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The differential equations of equilibrium of the normal stresses in

the stringers of a stringer-sheet combination are derived in Appendix G1

and one method of solving these equations is presented as a numerical ax-

ample. The solutions are presented as a linear combination of exponen-

tial functions. Results of this solution are comparedwith experimental

data in Figures G3 and G4 for panels B and C, respectively. Examination

of ___es G3 and G4 reveals the following information:

1. The theoretical curves and the experimental values for the nor-

real stresses in the stringers indicate the sametype stress dis-

tribution within the panel. For the loaded stringer, both methods

indicate a stress equal to P/A at the loaded end with the value

decreasing exponentially as the distance from the loaded end in-

creases. For the stringer adjacent to the loaded stringer, theory

and experiment both indicate normal stresses which increase from

zero at the loaded end to a maximumstress then slowly decrease
as the distance from the loaded end increases. For the remain-

ing two stringers, theory predicts stresses which increase from

zero at the loaded end to somehigher value then decrease slowly
as the distance from the loaded end increases. The experimental

values increase from zero at the loaded end, but do not reach

somemaximumvalue then decrease as did the theoretically pre-
dicted stresses.

2. Agreement between _ .... j _ _er__ment is _Door except at the

loaded end. The theoretically predicted stresses for stringers

l, 2, and 3 are non-conservative. For stringer 4 of panel C the

predicted stresses are conservative up to a point about 7 inches

from the loaded end then they, too, become non-conservative. In

panel B the predicted stresses in stringer 4 are conservative up

to a point about l_ inches from the loaded end.

3. Overall agreement between theory and experiment is better for

panel B than for panel C.

Minimum Potential Energy Equations.

Goodey's analysis KGll_ of the diffusion of end load into a panel

having (2N-l) stringers is presented in Appendix G2. His final equations

have the form of a finite sume of terms involving trigonometric and expo-

nential functions. As analysis of the diffusion of a 2000 pound end load
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in panels B and C was madeusing these equations. Results of this analysis

are presented in Figures G5 and G6 along with experimental data for corn-

Examination of Figures G5 and G6reveal the following informa-parison.
tion:

I. Both experimental and theoretical results indicate that, at some

distance from the loaded e_d, the end load is uniformly distri-

buted amongthe stringers.

2. For the loaded stringer, the agreementbetween theory and experi-

ment is good with the best agreement at the loaded end. For pan-

el B, the agreement is poor except at the loaded end. Agreement

between theory and experiment for the unloaded stringers in panel
C is fair.

3. Theoretically predicted stresses are conservative.

Stress Function Solution

A stress function for a panel reinforced at the loaded end perpendi-

cular to the stringer is presented in Appendix G3. Although panel C does

not have a reinforced end, a comparison is madebetween the analytical

solution and experimental data in Figure G7. Agreementbetween theory

and experiment is not, and was not e_ected to be, good. The method is

presented because it represents another approach to the problem, although

for a slightly different configuration.

The stringer-sheet theory is also given in Appendix G3. This repre-

sents one of the easier theories to apply; however, it can only be applied

to the loaded stringer as a quick investigation of the equation will re-

veal. This analysis was applied to the loaded stringers of panels B and

C and the results plotted in Figures G8 and G9with experimental data.

Investigation of the two curves indicates good agreement between theory

and experiment, the theoretical solution being slightly non-conservative

in one region and slightly conservative in another.

The Substitute Single Stringer Method

The method for analyzing multistringer panels using a substitute

stringer is presented in Appendix G4. Results of this method applied to

panels B and C having a 2000 pound end load are presented in Figures GlO

and Gll with experimental data. Due to the nature of the solution, stresses
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in the unloaded stringers cannot be predicted; however, it can be seen

from the curves that the stresses in the substitute stringer are quite

close to the stresses in the stringer adjacent to the loaded stringer.

Agreementbetween predicted stresses and e_perimental stresses in the

loaded stringer is also good.

MinimumEnergy Solution Using Matrix Methods

An outline of the analysis of panels B and C utilizing matrix methods

based upon the Max_ell-Mohrmethod is presented in Appendix G5. A de-

tailed analysis of this type would be practically impossible without the

aid of a digital computer. The Univac 1107, located at the University of

AlabamaResearch Institute, Huntsville, Alabama, was used. Results of

these analyses are presented in Figures G12and G13with experimental data.

This analysis was performed in the preparation of Appendix F.

For panel B, the agreementbetween theory and experiment is fair,

better agreement existing in stringer 4 than in the others. The theory

is conservative throughout most of the panel. Better overall agreement

between theory and experiment exist in the case of panel C, but in this

case stringer 4 does not exhibit as good agreement as in panel B. Also,

theoretical stresses in stringer 4were on the non-conservative side.

CONCLUSIONS

As was previously, stated, the main objective of this phase of the

contract was the comparison of several existing theories of shear lag an-

alysis with someof the experimental data. The conclusions reported in

this appendix are based on the comparison of the theoretically predicted

normal stresses in the stringers with the experimentally determined normal

stresses. The conclusions would probably be different if normal and shear-

ing stresses in the sheet had been included in the analyses and comparisons.
The comparisons led to the conclusion that the best method of analysis con-

sists of a combination of the methods studied rather than any one method

by itself. Based on the comparisons reported, the following methods of
analysis are suggested:

Based on Accuracy

1. If it is only desired to predict the stresses in the loaded
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.

stringer, either the stringer-sheet theory or the substitute-

single-stringer theory should be used. The agreement between

theory and experiment is about the same for both methods.

If it is desired to predict the state of stress in the loaded

stringer and approximate the stresses in the adjacent stringers,

the substitute-single-stringer method is preferable.

If it is desired to predict the stresses in each st_nger of the

panel, the analysis based on the solution of the differential

equations of equilibrium of the normal stresses using minimum

potential energy considerations is preferable. The stringer-

sheet theory or substitute-single-stringer theory could be used

at the same time to predict the stresses in the loaded stringer.

Based on Time Required to Perform Analysis

I. If it is desired to perform a quick analysis, the substitute-

single-stringer method is suggested.

2. If it is desired to obtain a more complete picture of the stress

distribution in the panel than the substitute-single-stringer

method allows, use of the minimum potential energy equations is;

suggested.

3. The other methods of analysis discussed in the preceeding chapter

take much more time to perform than either of the two above and

could not be used to perform a quick analysis.

i.

•Based on the Type of Structure to Which the

Solution is Applicable

Since the experimental data used for purposes of comparison was

obtained from simple structures, i.e., ones having constant skin

thickness and equally spaced stiffeners having the same constant

area, a great deal cannot be said about the applicability of the

various methods to other structures. It would seem probable,

based on the form of equations involved, that the matrix method

solution presented in Appendix F would apply to more configura-

tions than would any of the other methods.
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Recommendations

Time did not permit a study of all of the available methods of solu-

tion. Amongthe methods which have been omitted might be a better method

than any reported in this appendix. Theresearch reported herein Should

be continued using the following analytical methods or analogies for corn-

parison:
1.

2.

3.

4.

5.

Akao's finite difference equations,

Fine's stress function solution,

Goland's hydrodynamic analogy,

Ross and Newton's electrical analogy,

Kuhn's mechanicalanalog.

The research should be further continued to include the analysis of

panels having

1. unequally spaced stiffeners,

2. stiffeners with different areas,

3. variable skin thickness,

4. stiffeners which have areas varying along the length of the

oanel,

5. skin which varies along the length of the panel,

6. combinations of the above.
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APPENDIX G1

DI_AL EQUATION SOLUTION

Figure Gl-I represents one-half of a longitudinally stiffened panel,

symm2tric about the center line, subjected to an axial compressive load

on the outer stringer. From Figure Gl-lb, a free-body diagram of the

outer normal stresses and the sheet carries only shearing stresses, sum-

ruing forces in the vertical direction,

(_l + dal)_ - _l tdx - _l A _ O,

or

d% t

dx C_l = O. (GI-I)

From Gl-lc, a free-body diagram of stringer 2,

_ltdx + (_2 + dG2)A2 - G2_ - '1:2tdx = O,

or

From Gl-ld, a free-body diagram of stringer 3,

_2 tdx+ (_3 + dG3)A3 - _3A3 - _3tdx" O,

or

do 3

dx

t

A3('1:3 - _2) = O.

In general,

(GI-3)

or

da
n t

dx A'(_n - _n-1 ) = O,
n
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d_

n
(oz-_)

Differentiating Equation Ol-h with respect to x,

d2 _n
n

(GI-5)

If we assume tan 7 = 7 ; then from Figure G1-2 the shear strain

at station x is given by

= _ (_I - _2 )
Y 1 DIE

The incrememt of shear strain is

(GI-6)

(_I - ('2)
dy = bE dx. (oz-7)

The increment of shear stresses is

d_l G

= blE (_1 (_2) '
(G1-8)

or, in general,

dz
n G

= _---# C_ - _,,,._1 .

Substituting Equation GI-9 into Equation Gi-5,

d2% [ G= _ FE (_n - _n÷l ) b E
n n n

Assuming b n = constant = b,

(Ol-9)

d2_n Gt [ 2 ]- (_n - (rn÷ 1 - %- I " (GI-10)

Numerical Example

The value of A is determined from the dimensions of the left hand
n

stringer shown in Figure G2. Thus,
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A ffi (0.556)(1.0) = 0.556.
n

This value i8 used throughout although the actual areas of the other

stringers differ by a small amount. The value of b is g/,venby _he dis-

tance between the centroid of the left hand stringer and the adjacent

stringer. Thus,

0.556 0.556
b =---_ + 2.273 +---_ ffi2.829.

The mechanical properties of the material are

G = [3.9)(I0 6) psi,

E = (10.5)(]06 ) psi.

Substituting properties of panel C i_tD Equation GI-10 for stringer

1, 2, 3, and 4 yields

: ..... _ ....... 20,1- 0,2(2.829)(0.556)(10,5)(106 )

d20,1

= 0.0h.712n - 0.023560,2

d20,2

= °'°2356120,2- 0,3- 0,1'

= 0.0/.I.712o. 2 - 0.023560, 3 - 0.023560,1

d20, 3

= 0.02356[20, 3 - oh. - 0,2]

(az-_)

(oz-12)

= 0.0/4.7120, 3 - 0.02356%- 0.023560, 2 ((31-13)

d20,h.

= 0.02356120,.- 0,5- 0,3] •

Since the panel has 7 stringers and is symmetric about the center

line,

90N
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_5 = _3 by symmetry.

d2%

- o.o 7n, 4 -  .04712 3 .

D 2 _2

_3

%

(Q1-1h)

Writing Equations GI-II, GI-12, GI-13, and Gl-lh in matrix notation

. . _ J -- o

o1 .0/4712 -.02356 0 0 ! or,

o'.,
' _ (ai-15)

.04712 -.02356 0

-.02356 .0#712 -.02356

0 -.0#712 .04712

-.02356

0

0 L%

d2

where D 2 denotes d--_x :

The characteristic equation i$ obtained from the matrix

0.04712 - X -0.02356 0 0

-0.02356 0.04712 - X -0.02356 0

0 -0.02356 0.0#712 - k -0.02356

0 0 -0.04712 0.0_712 - k

setting its determinant equal to zero

1 - _ -1/2 0 0

-1/2 1 - < -1/2 o

o -1/2 1 - K ,1/2

0 0 -1 1 -

where _ 0.04712 '

=0

Expanding the determinant

_4 _ _3 + 9<2 _ 2_ + 0.125 = 0.

The roots to Equation AI6 are

W = 0o6!03_J_5

(oi-16)
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_2

so that

kl

k2

k 3

k4

= 0.0761025

= 1.9135555

= 1.3999975

- 0.02875943

= 0.00358594

= 0.09016673

= 0.06596788

The solution to Equation GI-15 is

i0.1"

o"2

0'3

%

'=kl"

e- x] k2

Lk4;

where M is the coefficient matrix of Equation

moat easily determined from the relation

e-'V/Mx = e-V_xzl . e_-_Xz2 , e'_Xz3

where the z's are given by

(Gl-17)

GI-15. The term e_x is

+ e_x z4 (Gi-18)

(k I _ k2)(Xl - k3)Ckl - X4)zl = (M - k2I)(M - k31)(M - k41)

(X 2 _ kl)(k2 - k3)(k2 - k4)z 2 = (M - klI)(M - k31)(M - k& I)

(k 3 _ kl)(k3 - k2)(k3 - k4)z 3 = (M - XII)(M - X2I)(M - X4I)

(X 4 _ XI)(A4 _ X2)(X_ - X3)z 4 = (M - XII)(M - X21)(M - X3I)

where I is the unit matrix.

Perfo_,__ing the calcu!_tion_ indicated:

(oi-ig)

(Gi-20)

(Gi-2i)

(GI-22)
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Zl=

z2=

z3=

z4--

0,43689435 0.31665946 -0,17716203 -0,22736339"

0,31665946 0,25973232 -0,13806731 -0,17716203

-0,17716203 -0,13806731 0,08257029 0,08929606

-0,45472678 -0.35432402 0,17859217 0,25973235

0,06816075 0,13502883 0.17771952 0,09618382"

0,13602883 0,24588038 0,32839648 0,17771962

0,17771962 O, 32839648 0,42360001 0,23221266

0,19236764 O, 35543923 0.46/P.12530 0,24588037
m

0.06863274 -0,13604887 0,18572910 -0,101646_J

-0,1360#887 0.25436184 -0.33934175 0,18572910

0,18572910 -0,3393_'.175 0,4_.009096 -0,23769531

-0.20329288 0.37145820 -0.47539065 0.25436184

0.42631324 -0.31663507 -0.18628016 0.23282547

-0.31663507 0.24003309 0.14901589 -0.18628016

-0.18628016 0.14901589 0.05375296 -0.08380958

0.46565096 -0.37256030 -0.16761910 0.24003311

At x 0,

e-._x =I.

(GI-2 3 )

(G1-24)

(ol-25)

(GI-26)

So that equation GI-17 becomes

_I I 0 0 O"

0'2 0 I 0 0

_3 0 0 1 0

% o o o 1

. °

kI

k2

k 3

.k4.

(GI-27)

Also at x = 0,



P
_1 = X _= 1800

_2 =%=%=0.

Therefore, from Equation GI-27

%

_3

2_

l

kI = 1800

k2 =0

k3=0

k4 =0.

The solution of Equation GI-15 is thus

-0./43689/435 0.316659/46 -0.17716203 -0.22736339-

-0.]6958605X 0.316659/46 0.25973232 -0.13806731 -0.17716203
e

-0.17716203 -0.13806731 0.08257029 0.08929606

-0./45472678 -0.35/432/402 0.17859217 0.25973235

+ e-0.059882718x

a

0.06816075 0.13602883 0.17771962 0.09618382

0.13602883 0.24588038 0.328396/48 0.17771962

0.17771962 0.32839648 0./42360001 0.23221266

0.1923676/4 0.35543923 0.46/4/42530 0.24588037

i0.3002777_
÷e

-0.2568/4213x
+ e

0_0686327/4 -0.1360/4887 0.18572910 -0.1016/46h/1.

-0.13604887 0.2543618/4 -0.3393/4175 0.185729101

0.18572910 -0.3393/4175 0._009096 -0.23769531

-0.20329288 -0_371/45820 -0.47539065 0.25436184

0.4263132/4 -0.31663507 -0.18628016 0.23282548

-0.31663507 0.2_003309 0.14901589 -0.18628016

-0.18628016 0.I_901589 0.05375296 -0.08380958

L

1800

0

0

0.46565096_-0.37256030-o.1676_9xo o.21,ooa31_ I L o J
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or

_I = [O'_3689435e-O'16958605x
+ O.06816075e-O.O59882718x

-0. 30027775x+ O. 0686327z_e
+ O'Ll'263132Zse-O'2568h'213x] 1800

0"2 = [ 0.31665946e-O.16958605x
+ O. 13602883e-0.059882 718x

O. 13604887e-0.-_02,775x
0"31663507e_0"25684213=] I800

0"3 = [ -0"17716203e -0"16958605z

+ 0.18572910e-O.30027775x

_4 = [_0"_5_72678e -0"16958605=

- 0.20329288e-O.30027775x

The stresses obta£ned from the above solut£on

G_ along with the experimental data.

+ O.17771962e-O.O59882718x

- O'18628016e-O'2568_213x] 1800

+ O. 192 3676/_e -0- 059882718x

+ 0"46565096e-O'2568_213xj 1800

are plotted in Figure
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APPENDIX G2

MINIMUM POTENTIAL E_GY EQUATIONS

Goodey [GI3] presented an analysis of the diffusion of an end

load into a panel with (2N-I) stringers. In this solution, the

stringers are treated as discrete members separated by panels of skin

which transmit only shear stresses.

The panel considered is shown in Figure G2-1 where the notation

used is also given.

Following is an outline of the analysis:

I. Considering elements of the stringers and longerons, differ-

ential equations of equilibrium of the forces were obtained.

2. Equations from step I were integrated from x to _.

3. The differential equation for the total strain energy, U,

for half the complete panel was derived.

4. Conditions of minimum strain energy were then obtained by

applyir_ the method of the calculus of variations to the in-

tegral for U, resulting in N independent equations. These

equations were then substituted into the results of step 2

yielding a set of second order differential equations.

5. A solution was assumed for the equations in step 4.

6. Through the use of boundary conditions, various trigonometric

identities, and algebraic manipulations, the constants of

integration were evaluated.

7. The final solutions were presented as follows:



LONGERON AREA : A. END LOADS

(y.,.-½)To Fo
SHEAR

_L I STRESSES q_ Fa

2 qz F|

n o4 F_

N - I qw-0 Fie-!

N % F.

SKIN

THICKNESS
=t

(N,m- _-)To
AREA OF ONE STRINGER : As

AL

_- inTo

"To

"To

"_To

To

"-- To

" To

"_ To

"-- To

" To

inTo

- Z

%tSx

dF.
F. _ F.+ _';-SK

q,_tSx

ELEMENT OF ntu

STRINGER

dx

qit_X

ELEMENT OF LONGERON
OR EDGE MEMBER

Fit

q.t81

dP.
Fit+ d-/--g_

ELEMENT OF

N TM STRINGER

FIGURE G2-1. - NOTATION USED IN MINIMUM POTENTIAL

ENERGY SOLUTION.
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T
o

T
oo

= m -

r=N

r=l

[cos(2N_r)Sin(2N-1)_ r ] e-2kx(sin_r )

I

m-_

sin_r I N + l+_4m(m_l)sin20r_

(C-2-2)

F
n

m

T
co

= 1 + (2N ÷ 2M - 1) •

[ cos(2N_r)eOs2(N-n)_ r,] e-2kx(sin_r)

' m'- 1

N+

1+4m(m- 1)sin2 _0r
r=l

(o2-3)

n = I, 2, 3, ..., N

where m = AL , k =FGt] I/2 r

AS _J ' _r = N_ ' r = I toN.

For the special case when m = I the above equations reduced

to

F r=N

o _ 2 -2kxsin_ r
_- = I + 2__cos _re

co r=l

r cos _r cos( 2N+I )_r
Fn = -2kxsin_r
_-- I+2 e

oo r=l

Numerical Example

Consider panel C as shown in Figure G2. It is assumed that all

stiffener areas are the same and that b = 2.84 = constant, t = 0.1 =

constant. This panel is, according to Goodey's nomenclature, a 5

stringer, 2 longeron panel. Thus

2N-I = 5 ,

N=3

ku," -u, /

(02-5)
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D
Since the areas of the stiffeners are assumed to be equal, the

ratio oflongeron area to stringer area is

A L

m =_S = 1

so that equations G2-4 and G2-5 can be used. Remembering that

rTl rTi
m r = -- = radians2N+I _-

then

F
o

m

T
CO

3

r___ -2kxsin_r
= 1 + 2 coS2@re

= i + 2 /cos2_e -2kxsin_l
2 -kxsin¢2

+ cos _2 •

2 -2kxs in_ 3_

+ cos _,j3e ) •

Substituting the value of _r into Equation G2-6_

(G2-6)

F° (0_-- = I + 2 .8119_5e -0"86836kx
OO

+ 0.388939e -1'563_kx

+ 0.049461e-l'97489kx).

Osingequation G2-5 for stringer I,

FI Z -2xksin_r_- = 1 + 2 cOS_rCOS3_e

r=l

Substituting the value of _r'

F1 (_. 199576e-0.86836kx
-- =1+2

Too

_ 0.561796e -1"5634kx

_ 0.438925e -1"94978kx) •

Using equation G2-5 for stringer 2

F2 _r=3 -2kxsin_r
-- = 1 + 2 _ coS_OrCOSS_p re
T Z_.,-

r=l

(G2-7)

(G2-8)
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Substituting the value of _r'

F2 (-0.561589e -0" 86836kx
=I+2

Too

_ 0.138874e -1.563_kx

+ 0.200652e "1"94478kx

}
@ (G2-9)

Likewise for stringer 3

(_- = I + 2 -0.90082e -0"86836kx + 0,62365e -l'563gkx
co

- 0"22268e-l'99978kx) • (G2-10)

Equations G2-7, G2-8, G2-9 and G2-10 apply to any 7 stringer panel with

m = I and b and t constant. Thus they can be used for the analysis of

panel B as well as C, the only difference being in the value of k.

Numerical evaluation of the above equations was performed at in-

crements of x = I inch from x = 0 to x = 24. To expedite these calcu-

lations, a digital computer program was written for the Univac Solid

State 80 which is on the University of Alabama's main campus. The

machine language used was Bama-Bell II which is a floating point mathe-

9
matical interpretative system for the USS 80.-

The program used follows:

200 I556901000

201 I506901000

202 0600000000

203 0800000005

20a. I201100109

205 6400400000

206 3400109300

2Gray, William J.: Bama-Bell II, Floating Point Mathematical

Interpretative System for USS 80 System. University of Alabama Computer

Center.
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207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

'_')3_.#.,

224

225

226

zzz

3103300301

R601301301

3106301301

310_300302

R601302 302

3107302 302

3105300303

R601303303

3108303303

1301302302

1302303303

3102 303/_01

1101401401

3401100401

1241400401

1101400400

, _00,.,.. J,=0u

7000003202

I260000000

R403000000

200 Note: the z's must be a double punch nine over

e ight.

Writing the equations to be evaluated in the general form

--FnT.= 1 " 2(Cle-0"86836kx' C2e-1;563"kX + C3 e-l_97489kx)

the following shows the necessary data locations for use of the above

given program:

I00 T (in floating point)
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I01

I02

103

104

105

106

107

108

109

5010000000

5020000000

498683600@

501563/4.000

5019/4.97800

C1

C 2

C 3

k

(negative)

(negative)

(negative)

(in floating point)

(in floating point)

(in floating point)

(in floating point)

The print out, in floating point, is of the form:

x f(x)

xI f(x I)

x2 f(x 2)

• •

• •

5124000000 f _)

For panel C having a I000 load on each longeron,

2OOO
T 2(0.5557)+2(0.5632)+2(0.5618)+0.5612 = 509.86

k

I (3.9)(i06)(0.i) )]1/2 = 0.15355.10.5)(t06)(2.8_)(0.555

Equations G2-7, G2-8, G2-9 and G2-1O are shown plotted in Figure G6

along with _xperimental data for comparison.
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APPENDIX G3

STRESS FUNCTION SOLUTION

_13] presented a stress function type solution for theGoodey

analysis of a plane sheet reinforced in two directions at right angles.

This analysis was as follows:

Referring to Figure G3-1, the following equations were obtained for

the stiffeners.

I (_x - _y)_X =_

Vy=_

(03-I)

(G3-2)

T

G= E
r(r-_ - wC

ry (03-3)

Defining the average normal stress as

Psheet + Pstiffener

Ashee t ÷ Astiffene r '

the average stress in direction O
X

t +tx x

is

(03-4)

and the average stress in direction 0
Y

t_ + ty(_ - _%> -_P .
t+ty y

Defining

tk = t + tx
k x = 1 + t' X

iS

(03-5)

(G3-6)

and

ffiI + h tk = t + ty.
ky t ' y

(G3-7)
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Y

O_

__+ XYsy dy

x _ ÷ X
x _'-_

o ,_ + --_.X.dx
y xy 8x

ELEMENT OF SHEET

Ares of stiffeners = t per
unit width of sheet. Y

X

Section of sheet and stiffeners
normal to OY

Area of stiffeners

- tx per unit width

of sheet

I
Section of sheet and

stiffeners normal to

OX

FIGURE G3-1. - DIAGRAM OF PLAIN SHEET REINFORCED IN TWO DIRECTIONS AT
RIGHT ANGLES.

P
A

Tangent at P

U
X

FIGURE G3-2. -VIEW OF CROSS-SECTION LOOKING ALONG 0Z IN POSITIVE
DIRECTION OF Z.
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Substituting Equations G3-6 and G3-7 into Equations G3-h and G3-5,

yields, after some manipulation,

1

Px = _x - _(I - _-) (o3-8)
x

1

Py = _y - _x (1 - _')" (03-9)
Y

Distributing the area of the stiffenera in the x dlrection uni-

formly over the sheet results in the free-body diagrams of Figure G3-3.

(t+t x) dy( o x

(t+tx)dY eXa _----_I

t_ dx
xy

_a

FIGURE G3-3. - FREE-BODY SHOWING FORCES IN x DIRECTION

ACTING ON ELEMENT OF SHEET AND STRINGER

X
ave

+ dx
%x

ave

Summation of forces in the x direction yields

aG
x a._

t ) ave(t + x_+ t-N_= O. (G3-10)

Substituting Equation G3-h into Equation G3-10 for o
X
ave

"_ #X t +" (#X - u_)tx + t_ : O.

results in

(G3-11)

From Equation G3-4,

8 t + + t _ ax (Sx-USy)tx _ =_x Px(t+tx ) + t

a_

= t_ + _x:(Pxkx t) (G3-12)
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so that

t-_y +_xx Px k = 0

or

Similarly, the area of the stiffeners in the y direction may be

distributed and forces summed in the y direction. The following equa-

tion results

_ _p

_x + ky_y =0.
(G3-14)

Equations G3-13 and G3-1_ are satisfied if we express the stresses

in terms of a stress function _, where

(o3-:5)

Py = ky aJ "
(G3-17)

Substituting Equations G3-8 and G3-9 into Equations G3-1 and G3-2

and rewriting Equation G3-3 yields

= P - PY_-_'-'x (G3-18)Eex x

Eey = Py - Px k_- (G3-19)
Y

Ecx7 : 2(I + P)_x7 " (G3-_O)

Now, using the relations,



Cx

8v Bu
= +

: a2_
p -

y ky ax2

and substituting into Equations 03-18, 03-19, and G3-20

F_u : a2_ _ : a2_ (03-21)

k-yax ky x

E av + = 2(1 + _)(- ) .

Differentiating Equation G3-21 twice with respect to y,

- kx ay_ kxky 8 x28 y2

Differentiating Equation G3-22 twice with respect to x,

(G3-22)

(G3-23)

(G3-24)

a_. : a% a%
(G3-25)

Adding Equations G3-24 and G3-25 then substituting Equation G3-23 yields

_.:-.y_ • 2 • ,.,<:- :--.-y a=_y2 . : _ = o .

If k = k = 1, this equation reduces to the familiar equationVg@ - 0
x y

(G3-26)
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Assume a solution of Equation G3-26 of the form

@ = (Acoshalky + Bcosha2kY)sinkx

where al and a2 satisfy the equation

"- 2 + _(I l l_- - + =0 ,
kx y

or

2 2

al a2

-_-, -k--=l +_(_
X x kxky

I

kk
xy

and A and B are constants.

The stresses are now given by the equations

-_xy =_ = IsinhalXY + BR2sinha2k '

kxP x = _ = k2sinkx Aal2COShalkY + Ba22cosha2 k ,

a 2@
kP -
Y Y _x 2 - _X2sinXx (AcoshalXy + Bcosha2Xy ) •

(G3-27)

(G3-28)

;(o3-29)

(G3-30)

(G3-31)

(G3-32)

In order to satisfy the condition P
Y

sary that

= 0 when y = + a, it is neces-

or

Acoshalka + Bcosha2ka = 0

A B

cosha2Xa coshalka
= k(k) . (G3-33)

Substitution into Equations G3-27, G3-30, G3-31 and G3-32 yields

@= k(k) [(cosha2)_a)(cosh Ctl_ y)- (cosha lka)Ccosh a2k y)] sin)_x, (G3-34)

-_ P "1

-_xy =k_k(k)_alc°sha2ka)(sinhalkY)-(a2c°shalka)(slnha21Y)J c°shkx'

(03-35)

308



kP
YY

(G3-36)

=- 2k(_.)_cosh_2"k.a)(coshal"k.y) - (coshal"k,a)(cosha2"k,y)]slr_.x .

(Q3-37)
The end load in the skin from y = 0 to y = a is given by

Pxkxtdy = ktk(k) alCOeha2_a)(s£nhalka) - (a2coahal_a)(siuha2ka sin_x,

(Q3-38)

and the end load in one flange is given by

(AFPx)y=a = kx o.12 - o.22)(coshO.lka)Ccosh(z2_.a sir_x.
(G3-39)

If 2T ° is the total end load, integration with respect to A from

0 to oo ylelds

CO

2T° -_ )_tk()') _alC°Sha2_a) (sinhal)_a) - (a2c°Shal)_a) (sinha2 _a)n

"k--'_ (al 2 -a22)(c°slw'1ka)(c°stuz2"k'a)_sin_'xd'k .(G3-40)

If T is constant, it may be represented by the integral
O

OO

2T° _o sin_xT d k . (G3-41)

Since the two integrals must be the same,

= nt_ alka(cosl_z'2ka)(sinl_lka) - a2ks(cosha;ka)(sinh=2ka

L ÷mX2"2("/- J(a3- 2)
AF

where m = _ .
X

Therefore



2T a
o

t (cosba2ka)(coshalXY) - (coshalXa)(costm2XY) sinXxdX

+ mX2a2Cal2 - a22)Ccosh_iXa)(eosha2Xa)

(G3-43)

Letting 8 = ka, Equation G3-h3 may be simplified in appearance becoming

2T a
o

_t

P ale oo, l

I sine

V
altanb/zl@ - a2tanha2@ + m(a I

. (G3-_)

Evaluation of this integral was accomplished using the theory of resi-

dues. The result obtained was

F alenY a2enY 1

c°m'-"='- --I_coe--%--- a enX

eosa18 n cos¢2_ n . e

=T a_[(l+m) _n al see ¢Zlen-a 2 sec2a2en..mCal2--a2 2

(G3-45)

where the coefficients 8 are roots of the equation
n

altanal8 - a2tana28 + m(al2 - a22)8 = 0 . (G3-46)

The stresses are now obtained from Equation G3Uh5 by differentiation.

Letting T O = Poakxt(l+m) where Po is the uniform stress at x = _, the

stresses are

xy

P . alOnY . a2OnY] _
I a-SlIl_ "I'--'- a_ SlU_ --II- I un*
/l a z a I - --,r-

= - = 2Pokx(l+m e°salSn c°sa28n
2 2 A 2 ^ . 2 2

a I sec alUn-a 2 sec2a2Un+m[al -a 2 )

(G3-47)
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2 alenY 2 a 2enY] e x
COl_---------- (I,, COS..-.=-_--I - n

.t a -' a / _.m_
a2@ _ e a

a 1 sec alt_n-a 2 sec a2Un+mtal -a 2 )

(O3-h8)

F al_nY alqnY ]

I°°'-T °°'_I On.
1 a_ 2P°kx(l*m) Z _°sal n _ :,j e -_-

PY = _yy _-_x =" 5 (112 2 _ 2 2 _ 2 2sec alan-a2 sec a2_n+m(al --a 2 )

(a3-hg)

Numerical Example

Applying the analysis to panel C shown in Figure G2 with a lO00

compressive load acting on each of the outer flanges, for the average

dimensions,

P
o

2000

2(0.5557)+2(0.5632)+2(0.5618)+0.5612+2(0.099)(2.84_(0.I014)(2.846)

+(0.99)(2.845)

= 355.4 psi

t
X

2(0.5557)+2(0.5632)÷2(0.5618)+0.5612

2(2.8_+2.84+2.845)
= 0.19701

t
x 0.19701

k =I +--=I +
x t 0.I

= 2.9701

k = 1 .
Y

1 1

= _ = 0.3366
xy

2
a 1

_-V-. =
x

1 + p(1 ,, iF ,,.- ) + ÷ p(l - _ _

"x"y .,,/L Yyj -x,-,
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2
a./_1 =
k
X

1 + _(1 - 0.3366) JE ÷ _(1 - 0.3366)-_

2
- O. 3366

= 2.2956.

E1 =J2.2956(2.9701) = 2.611

2

k
X

1 ,  (1-0 3366)JE + _(I-0.3366)_ 2- 0.3366
= 0.1466.

_2 =J0.1_66(2.9701) = 0.6599.

8 n are given by the roots of the equation

2.611tan2.6110 - 0.6599tan0.65998 + m(6.81816 - 0.43542)8 = 0,

where

m =_ = 0.2268,
X

Or

2.611tan2.6118 - 0.6599tanO.65998 + I._768 = O. (o3-5o)

A digital computer program written in Bama Bell for the Univac So-

lid Sta_ Rn cc_.puter at the University of Alabama was used to determine

the roots to this equation.

It should be noted that the discontinuities existing in Equation

G3-50 can be avoided by rewriting it as

2.611sih2,6118cos0.65998 - 0.6599sinO.65998cos2.6118

+ l.t_465eeos2.611eeosO.65998 = 0. (G3-51)

The computer program used in solving for the roots to Equation G3-51 is as

follows:

193 1 556901000

19/4. 1 506901000

195 I202193223
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196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

22O

221

222

06OOOOOOOO

0800000005

I201100106

5001100400

3101400401

3102400402

R602401403

R603401404

R602402405

R603402406

3101406407

3407403407

3102405408

3406408408

3103_00409

340940/¢409

3409_06409

2407408410

1410409410

341010h_11

9411105218

R400598000

5001410104

5001400500

1400100400

5001250620

5001251626
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223

25O

251

598

599

60O

601

602

603

6O4

6O5

606

6O7

608

609

610

61!

612

613

614

615

616

617

618

619

620

621

R400200000

7000010600

7000010600

5001104299

5001400300

1500300501

3106501501

3101501503

3102501503

R602502504

R603502505

R602503506

R603503507

3101507508

3508504508

3102506509

3103501510

3510505510

3510507510

2508509511

1510511510

3510299511

9511105624

5001501300

7000010600

5001501509
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622 1241509510

623 R400218000

624 5001501500

625 5001510299

626 7000010600

627 5001501509

628 I241509510

629 R400218000

zzz 193

If we write Equation G3-51 in the general form

ClCOSC2%sinClO - C2cosClesinC2O + C30cosClecosC2e = O, ( 3-52)

the data used in the computer program and their locations are as fol-

lOWS:

I00 4850000000

lO1 C 1

102 C2

103 C 3

104 5010000000

105 0000000000

106 4950000000

(in floatin E point)

(in floating point)

(in floating point)

The print out format is as follows:

0 fCO) .

The magnitude of f(e) is an indication of the accuracy of the computa-

tion; the nearer it is to zero, the more accurate is the root.

The above program does not have a stop order and will run until the

desired number of roots have been found. In this example, the computa-

tion was stopped after the first 12 roots were found. They were as fol-

lows:
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e f(e)

0.9999756 0.40652682

2.1499756 - 0.38730/410

2.3500245 - 0.59294616

3.1715868 0.00000013

4.3577845 0.00000570

5.540_765 - 0.00000300

6.6999760 0.27386818

7.1000245 0.38465892

7.90002_5 - 0.01819730

9.0980275 - 0.00001230

10.295401 - 0.00002060

11.500111 0.00009_96

The above roots to the transcendental equation were used in Equa-

tion G3-48 for the evaluation of the stringer st_sses in the x direction.

Evaluation of Equation G3-48 was carried out from x = 0 to x = 24 at incre-

ments of x = i. A digital computer program was also written to perform

these calculations. It was as follows:

204 I556901000

205 I506901000

206 0600000000

207 0800000005

208 I201098123

209 6700701000

210 3103111400

2111 3112400_01

212 R603401401

213 310_401402
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2141

215

216

217

218

2191

220

221

2221

223

224

225

226

227

228

229

-- ..,0

231

232

233

234

236

237_

238

2._0

241

242

3112105403

R603403403

_02403/402

4401403/401

3106111404

3112_05

R603405405

3107405406

3112108407

R603407407

/4406407406

/-1_05407405

3403403403

4099403/4-03

310L1_03/403

3407407407

4099407,%07

3107407407

2403/4-07403

1403109403

R4002 36000

2402406402

4402403/-I-02

R400240000

Z082241001

5001402599

ZI00011211
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243

8OO

801

8021

803

244

2/$5

2L_6

2/471

2/491

250

25I

252

253

25/4

255

256

257

258

259

260

261

262

263

26/4

265

266

ZZZ

R400800000

Z092239/499

Z0922/41599

3112098_I 5

R4002/4#000

/-_15110/415

R601/415/415

/4099_15/415

R400249000

3600415/417

1417701701

ZI00011802

3700102700

3701101701

1100701700

R400256000

_N_I_OQKOO

5001111699

I2/41698700

1099098098

6700701000

7000024802

III0111111

6098098000

7000001209

I260000000

R403000000

20/4
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Equation G3-48 is shown plotted in Figure G7 along with experi-

mental data for comparison.

Stringer Sheet Solution

Consider Figure G3-2 which shows a reinforced cylindrical shell.

Take axes Ox, Oy, O z as shown in Figure G3-2, 0z being parallel to the axis

of the cylinder and 0 any convenient point of its cross section.

Let w = displacement in direction 0
z

s = distance along the circumference, measured from some

fixed point on the circumference.

u,v = displacements of the point 0 parallel to 0 and O
x y

respectively.

= angle of rotation of the cross section about O.

Refering to Fis_re G3-3 the displacement of the point P parallel

to the tangent at P is

_h+ ucos@ + vsi_ . (G3-53)

The shear strain is

aw a
= + Bh + ucos% + vsin@

aw a dx _e

a. _+_'_+_ds=_q + du dx dv.d_E" i i

E

Also, the longitudinal strain

aw Pz

_zz _z x ' (o3-55)

Pz being the average longltudinal stress in skin and stiffeners, as
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defined in the first part of this appendix. Sumning forces on an ele-

ment of the shell in direction Oz,

%_ Bp
zs z

"_d'Tz +kz.,_-z = O, (o3-56)

where

t
Z

k =I+
z _- " (G3-57)

Substituting equations G3-54 and G3-55 into equation G3-56

_ _=
_s 2 az 2 da 2

where

k2 = 2(1 + g)k .
z

For a flat panel, the right hand side of equation G3-58 is zero

since the _substitutions

S =x

y=O

h=O

can be made.

Assuming the fundamental solution

w = A[ (coshkks)(coskz) - I ],

the normal stress is

=E aw
Pz Y£ = - EAlcoshkka(ein_z) .

(Q3-58)

(Q3-59)

(G3-60)

(a3-61)

The end load in the skin is given by

J_o a k tEAkztPzd s = z (sinh_ka)(sinkz) (G3-62)k

Also, the strain in the flange is equal to the strain in the skin
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at z = s. Therefore, the end load in one flange is

-AFEAkcosh_ka(sinkz) = - mskztEAkcosh_ka(sir_z) (G3-63)

where AF = makzt" (G3-64)

Integrating from 0 to _ with respect to k to obtain the complete

solution,

T =
o

ktE

O

Putting kka = e, the equation becomes

T O = k_ a Ace) sinhe + races de .

If T is constant it may be expressed by the integral
O

(G3-66)

2T oo

=__o_ sin0Z d_e (G3-67)
T@ _d o ka 8

Equations G3-66 and G3-67 are identical, and therefore true for all values

of z if

A(e) = -

o

2T k_a
o

k tE (sinhe _+ mecoshe) •
z

(03-68)

Hence the required solution, using equation G3-53 is given by

w =:_A(coshkkscoskz - 1) dk
O

0s co_
2T ° I - cosh=_-

_k tE
z o e(sinhe + mecoshe)

de

(G3-69)

When evaluated using complex integration, the final result is

Ik E enS - enz !

Tok z cosO n I - co_-_-a • -lqk

w = k-_ aCl+m) + 2 .......

On(l + mcos2en)
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where the 8n'S are the roots to the equation

tans n + me n = 0.

Now the nomal stress is

II enS -_I

cose h • cos-_- e
= + * (o3-7o)

Pz Po 2(1 m)_=q. I + mcoS28n

Equation G3-70 has been written as a funetion of x to agree with the

other solutions in this paper.

Numerical Example

Applying the stringer-sheet analysis to panel B shown in Figure G1

with a I000 compressive load acting on each of the outer flanges, for

the given dimensions

P
o

2000

6

= 565.13 psi

t = 0.282+0.285+0'275+0=282+0,282+0.285+0.282
x _(2.6'l) = 0.12598.

k x = kz = 1 + _ = 2.2598

AF = 0.282.

a = 8.69.

k2 = 2(1 + p)k z

= 2(1 ÷ _)(2.2598) = 6.026133

k = 2._55

322



ak t
z

0 are the roots to
n

tans + me ffi0 ,
n

or, rewriting

0°282

0-°69(2.2598)(0,1)
= 0.1436.

_3

+ 0.1/4.360 cosO = 0
siren n n " (G3-71)

The computer program used in the determination of the roots to equa-

tion G3-51, with some changes, was used in the determination of the roots to

the above transcendental equation. Instruction cards 200 through 214

and 602 through 616 were replaced by the follo_r_ng cards:

200 R602_00_01

201 R603&00_02

202 3161£t001_03

203 3_02403_02

20_ 1_01_02410

205 R602501502

602 R602501502

603 R603501503

604. 310150150/4

605 350/4.503503

606 1502250510

607 RttO0617000

Writing equation G3-71 in the general form

sinen + Clenc°Sen = 0, (03-72)

the data used in the computer programand their locations are as follows:



D
100

101

102

103

10.

105

_06

_850000000

C1 (in floating point)

5010000000

5010000000

5010000000

0000000000

4950000000

The first 12 roots of Equation

2.6075298

5.3973575

8.3402930

11.365641

14.433643

17.525235

12.630902

23.745538

26.866203

29.991100

33.119075

36.249355

G3-71 were found to be

f(o)

-0.00000006

-0.00000068

-0.00000053

0.00000314

-0.00000176

0.00000531

-0.00000340

0.00000264

-0.00000151

0.00000269

-0.00000353

0.00000697

The above roots to the transcendental equation were used in equation

G3-70 for the evaluation of the stringer stresses in the x direction.

Evaluation of equation G3-70 was carried out from x = 0 to x = 24 at incre-

ments of x = 1. A digital computer program was written to perform these

ealculatfons. It was as follows:

193 1556901000
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194

195

196

197

198

199

200

2011

202

203

20_

205

206

207

208

209

2101

211

212

213

2141

215

216

217

218

219

220

1506901000

1202193226

R400197000

0600000000

0800000005

1201099116

6700702000

R603105400

3400_00h.00

3103_.00401

1101401_.01

/,u.r00L1.01401

Z082207001

5001401599

Z0!0011201

Z092207599

7.105099410

I-U-_1010/-t.h.lO

R601410410

4101410410

3500410415

1415702702

ZIO0011210

3702102702

1101702702

3702100702

5001099701
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221

222

223

22/4

225

226

IIIIZ

12_1701702

1101099099

6700702000

7000023210

1260000000

R_03000000

193

Equation G3-70 is plotted in Figure G8 along with experi-

mental data for comparison.
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APPENDIX G4

THE SUBSTITUTE SINGLE STRING_ METHOD

In this appendix, the substitute-single-stringer method presented

by Kuhn and Chiarito in Reference Gl9willbe applied to panel C.

The analysis of a multistringer panel by the substitute single

stringer method requires the following steps:

1.

e

The properties of the substitute panel are established as follows:

A. The substitute single stringer is first located at the centroid

of the internal forces in the stringers. Although the sheet is

assumed to carry only shear stresses, an effective width, of

sheet is considered to be acting with the sheet. The distance

from the outer flange to the centroid of the stringer areas

is b
c"

B. The area of the flange in the substitute panel is equal to the

area of the flange in the actual panel. The area of the substi-

tute stringer is equal to the sum of the areas of the stringers

in the actual panel plus the effective area of sheet acting

with them.

C. The substitute stringer is then located according to the em-

pirlcal relation

b s =[0.65 +_Jb c

where n is the number of stringers in the half panel.

The substitute panel is analyzed as follows:

From Figure G3-1b

AF_ F + _tdx - (% + d_F)A F = 0
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P P

(a)

((;F+ daF)AF

(b)

_tcL_

(o)

_tc_

(cL + dCL)A L

OLAL

.____b .____

(e)

FIGURE G3-1. - THREE STRINGER PANEL WITH SYMMETRICAL AXIAL LOAD.
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D

AIlO,

So

AFa_ F = _t_ .

AL(% + d%) - AL#_.+ _tdx = 0

ALderL - -_t(:Ix

AZ_F =_t_ - -A_d%.

From Figure G4-1e, the shear strain at station x is given by

v =_z(_F- =_.).

The fncrement of shear strain is

(_F - %)
d¥ = bE dx .

The increment of elmar stress is

a_ = _y = _(_F - %)dx .

Differentiating equation G4-2,

d2_ = _(d_ F - d_L) .

Subatltuting equation G4-1 into equation G4-3,

or

where

(o4-i)

(04-2)

(Gh-3)

(04-4)

(G4-5)
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A••umlng • •olutlon to equation G4-4 of the form

= CIekx + C2e -kx,

• ppllc•tlon of the boundary condition • • 0 at x = 0 yield•

0 = C1e0 + C2e-0.

•O

• C1 C2• • • _ j

kx -kx).
= Cl(e - •

Differentiating equation G4-7

= Clk(e kx + e -M=) .

Equating equation• G4-2 and G4-8,

G(_F - %>
C1 =

bEk(e kx + e-kX)

Application of the boundary condition

ylelda

_F = P/AF'

GCP/ >
C I =

bEk(e kL + e-kL)

Sub•tltutlng equation G4-10 into equation G4-7

GP •inh kx

¢ • b_ co•hkL "

Defining

AT'AF +"L

and •ub•titulng iuto equation G4-5,

k= b_ "

_L=O

(G_-6)

(o_-7)

(Q4-9)

atx--L

(G4-10)

(G4-11)

(Qb-12)

(G4-13)
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Now, from equation G_-ll

GPk s£uh kx GPk sinh kx

PkAL s£nh lax

- -_ coshkL "

Substitut£ng equation Gh-l_ into equation G_-I

(G4-1_)

PkAL s£nh kx dxd_ F ffi dx = _ CoshkL "

(G4-15)

Integrating,

PAL cosh kx

_F - _ cosh_;÷ c3 "
(G4 -16 )

sl.ce _F = P/AF .t x = L ,

p PAL

_ +C 3 •

(oL-17)

Now

(Q&-18)

Also from equatlon G_-I

Pk s_nh kxdo'L -- - '_dx =-]_ coshkL dx .

(o4-19)

I rite gr ating,

p coshkx ÷ C4% " - :_ Co,__"
(o4-2o)

S£nce _L = 0 at x = L,
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• = - Cosh "
(G4-21)

Equations O4-1_, Gh-18, and 04-21 determine the stress distribution in

the substitute stringer. Taking the origin st the tip, the change in

coordinates can be expressed as

x = L - x 1 . (04-22)

Now the approximation

sinhkx sinh k(L-x 1) siuhkLcoshkx 1 coshkLsinhkx 1

coshkL • cosh kL cosh kL cosh kL

1. kx x -kx, k.x, -kx,.
= tauhkL coshkx I = _e +e -e +e ) = e-kXl (G4-23)

may be made, since tanhkL-I_l for large values of kL.

Dropping the subscript on the x and considering the tip as the

origin, Equations G4-1_, O4-18 and G4-21 may now be written

PkAL -kx

"6 = "_T e

_F=_ I +-e

=L = _kl. (I - e-kx) "

(o4-25)

(G4-26)

Numerical Example

For panel C, the location of the centroid of the internal forces

i| (using an effective width equal to one half the distance between

otrlngere)

I
bc = _(2.5575)+3('0.565)+0.280 [(2.5575+_.265+7.11)(2.275)(0.1)

+2.8_(0.55_)(1)+5.59(1)+8.1075(0.280)(1) ] ,
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D
b = 3o7_0.

C

The areas of the substitute stringer and the flange are

A L = 0.7917 + 0.7908 + 0.3938 = 1.9763 in 2.

2
A_ = 0.565 in .
ff

The locatlon of the substitute stringer is

b s = (0.65 + 0.35/22)(3.740) = 2.75825 in.

Now substituting the above into the appropriate formulas

(,_._o_o._) I-1
k OI_lO_X275825)Lo---_ . = 0.1,503.

"%- "b ÷ "%: o.565+ 1.9763- 2.5,,13i,,2.

1000(0.17503)(1.9763) e-O.17503x
0.1(2.5413)

= 1,361.15e -0"17503x.

E. .j,ooo,,...o'F = + • ="/_'E_ + 0.565 •

ffi 393.5 + 1,376.h.e -0"17503x.

eL = _[1- e-k'x] = _1000 (1 - • -0"17503x)

= 393.5(1 - e-O'17503x).

The above equationa are shown plotted in Figure Oll wibh e_erimen-

tal data for comparison.
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APP_'DX X G5

MINIMUMF_r_CY sournoN USING _XX _ODS

Dividing panel C into bays with generalized forces as shown in

Figure G5-1, results in a statically indeterminate system which may be

solved by matrix methods. The type of stress distribution assumed as

well as the number of bays used determine the accuracy of the method.

For this analysis it was assumed that the stiffeners transmit only

normal stresses and the sheet material transmits only shearing stresses.

It was further assumed that the panel and loading are symmetrical.

The notation used is the same as used by Bruhn _.

For the analysis the following matrix operations are required:

I. Evaluate [arn ] = [gri][aij][gjn]

2. Evaluate Jars ]

L rmj

inver._e of Jars ]the

=r: -qr:o]L rs JL

5. Evaluate

6. Evaluate

7. As a check the matrix

[,..]-
may be evaluated. If all matrix operations have been exact, each element

of [Arn 1 should be zero. Due to rounding errors some of the elements may

not be zero, but they should be small compared with corresponding elements

of [arn ] .
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A Fortran IV program was written to perform the above matrix opera-

tions and the computation for panels B and C was performed by the Univac

1107 at the University of Alabama Research Institute located in Huntsville,

Alabama. Additional details are given in Appendix F.

Re_Its of these _nalyses are shown co_pared _th expe_Lmer_a! data

in Figures GI2 and GI3.
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L.i

1

-Z

-2

-2

-Z

-2

-I

L

r-- U|

2

!3

'4

5

IS

8

19

37

38

39

4O

41

42

43

44

I0

I!

12

13

14

15

16

17

le

"2

45

46

47

48

49

50

51

52

19

53

20 29

54

2! 30

55

22 31

56

23 32

57

24 33

58

25 34

59

26 35

60

27 3is

L :2.7"

L : 3.0"

b • 2.840"

b • 2.846"

b • 2.845"

FIGURE G5-1. - GENERALIZED FORCE SYSTEM USED IN MATRIX

ANALYSIS OF PANEL C. THE PANEL AND LOADING

ARE ASSUMED TO BE SYMMETRICAL.
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Abstracts

I. Babcock, C. D. and Sechler, E. E.: The Effect of Initial lmperfec-

tions on the Buckling Stress of Cylindrical Shells. NASA TND-2OO5,

July 1963.

Results of an experimental investigation carried out to determine

the effect of axially sy_netricinitial imperfections on the buckling

load of a circular cylindrical shell under axial compression are present-

ed.

Fabrication of the shells basically consisted of plating a copper

shell on an accurately machined wax mandrel and melting the mandrel out

of the shell. The wax core was a two to one mixture of refined paraffin

and Mobile Cerese Wax 2305. Plating was acco_plishedwith Cupric Fluo-

borate, Cu(BF4) 2. A photograph of the mandrel and finished wax form is

included. All shells had a base diameter of 8 inches and a length of 10

inches.

Tests were conducted to determine characteristics of the plated cop-

per. A typical stress-strain curve is presented. Young's modulus was

determined as 13.O x 10s psi. Evaluation of Poisson's ratio was not at-

tempted. A value of 0.3 was used for Foisson's ratio.

Testing was accomplished using a controlled displacement testing

machine. Loads were monitored using a cylindrical shell on which 24 foil

strain gages were mounted. A photograph of the testing machine and load

measuring shell is included.

After fabrication, the shells were measured for initial imperfection.

This was accomplished by determining the deviation of the generators of

the shell from a straight line. Measurements were made with a reluctance-

type pickup.

The shells were mountedinthe testing machine and secured with a

thin layer of Devconbetween the cylinder and the testing machine head.

The buckling load of the shells was then determined. Thirty-seven shells

with initial imperfections in the form of a half sine wave along the gen-

erator were tested along with three cylinders with a constant curvature

imperfection along the generator.

Results of the tests are presented in tabular and graphical form.

The table indicates model geometry, intended initial i_perlection, buck-
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ling stress, Eigen number, and the variation of load distributions near

buhkling. Load distribution as a function of applied load is shown graph-

ically for two of the cylinders tested.

The analysis developed in the Appendix is used for comparison with

experiments. The solution of the perturbation equations satisfies com-

patibility exactly and equilibrium approximately. Experimental results

were well below those predicted analytically for the buckling stress

(about 0_7 of the theoretical stess). Test results show reasonable scat-

ter for tests on cylinders.

The authors are at the California Institute of Technology. 7 References.

2. Card, M. F. : Bending Tests of Large-Diameter Stiffened Cylinders

Susceptible to General Instability. NASA TN D-2200, April 1964.

Seven ring-and-stringer stiffened, circular cylinders were loaded

to failure in bending. Correlation between orthotropic buckling theory

and experiment was found to be fairly good, discrepancies being attribu-

ted mainly to uncertainties in two of the orthotropic stiffenesses. Graphs

are presented showin_ both calculated and test results. Calculated data

is about lO percent conservative for the group I (b/t = 125) cylinders

and 20 to 30 percent conservative for the group II (b/t = 200) cylinders.

Test _L.=ns consisted of seven 77-inch-diameter cylinders, stiff -_

ened on the outer surface with extruded Z-section stringers and on the

inner surface with small, formed hat-section rings. Dimensions of the

small rings and stringers as well as the overall dimensions of the cyl-

inders are presented in figures and tables. Cylinders were constructed

of 7075-T6 aluminum alloy.

The cylinders were loaded in bending through a loading frame with

the use of a hydraulic jack. A photograph of the test setup is shown.

Each cylinder was instrumented with resistance-type wire strain gages,

to detect local buckling; to detect overall buckling of the cylinder wall;

and to indicate stress distribution in the cylinder. Strains were re-

corded at a virtually continuous rate.

To predict general instability loads for the test cylinders, an orth-

otropic compressive stability equation that is a function of eight stiff-

nesses. Methods of evaluating these stiffnesses are presented and the
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sensitivity of general instability predictions to these stiffnesses is

given in the appendix. The results of this study indicated that the gen-

eral instability curves could be affected considerably by the magnitudes

of the circumferential bending stiffness and the shearing stiffness.

It is suggested that one cause of the discrepancy between theory and

experiment might be attributed to the customary lack of agreement between

small-deflection buckling theory and experiment. A correlation factor is

usually applied to buckling computations to bring them into better agree-

ment with experiment. For orthotr0pic cylinders there is a lack of exper-
l

imental information upon which to base this emperical parameter.

The effects of asymmetry of the walls of the test cylinders was in-

vestigated and found to be negligible.

The author is at Langley Research Center. 14 References.

3. Clark, R. A. and Garibotti, J.F.: Longitudinal Bending of A Conical

Shell. Douglas Missile and Space Systems Division, Engineering Paperl547,

March 1963.

Longitudinalbending of an elastic truncated conical shell under

lateral or "wind" loads is considered. Corrections to the membrane so-

lution, are obtained by applying the general linear behding theory of thin

elastic shells.

The basic eighth-order system of differential equations obtained by

linear bending theory is reduced following the method of Chernina to a

pair of coupled second-order non-homogeneous differential equations. An

approximation consistent with thin shell theory is made and the pair of

second-order equations are reduced to a single complex differential equa-

tion of second-order.

Approximate edge-zone solutions are given in terms of elementary func-

tions. Explicit formulas for maxiumedge-zcne stresses are given. The

solutions are illustrated by applying them to a shell subjected to a re-

sultant bending moment at each end. A numerical example is solved and

compares favorably with a numerical study of G. A. Thruston.

The author is at Case Institute of Technology, Cleveland, Ohio. 8 Refer_

ences.
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• Gerard, G., and Papirno, R. : MinimumWeight Design of Stiffened Cyl -_

inders for Launch Vehicle Applications. Allied Research Associates, Inc.,

Technical Report No. 235-5, March 13, 1964.

The minimumweight analysis of moderate length, grid stiffened cy-
linders under axial compression is presented based on the use of ortho-

tropic cylinder theory.

The comparative efficiencies of various types of stiffening systems

are presented for a broad range of the governing structural loading par-

ameter. Design data on current and projected launch vehicles indicate

that all such designs fall within a very narrow range of the structural

loading parameter. This observation permits a set of gener_ized ccn_lui

_Sionsto be draw__Concerning the Solution_ of the efficientJsti_fening
_ystemsand materials for launch vehi'cle design: ....

1. The N/Ed range of current and projected launch vehicles is such

that elastic buckling considerations govern if reasonable com-

pressive yield strength materials are utilized. Becauseelas-

tic buckling governs the lower density alloys becomedesirable

(except for the pressure stabilized case).

2. On the basis of compressive loading as the design criterion, _

_e_ _ _o _ advantage i_u usi_-_ _-"-_ strength _-_-_ _._terials for

the primary launch vehicle structure (except for the pressure

stabilized case) since the N/Ed range is relatively low. In

fact, aluminum alloys with a compressive yield strength of 50

psi should be quite adequate.

3. In the launch vehicle N/Ed range considered, optimum grid stiff-

ened cylinders are roughly one-quarter of the weight of unstiff-

ened cylinders. Moreover, they are directly competitive with

optimum sandwich cylinders.

4. Pressure stabilized cylinders that utilize high strength sheet

materials (E/_ty__= 1OO)are distinctly superior to other forms
of construction at the lower end of the launch vehicle N/Ed

range. From a materials viewpoint, the efficiency of pressure

stabilized structures dependsupon the tensile strength/density
ratio.

353



The Authors are withAl lied Research Associates. 10 References.

5. Goldberg, J. E.: Analysis of Conical Shells Under Unsymmetrical Con-

ditions. General Dynamics/Astronautics, ERR-AN-080, November 15, 1961.

The differential equations for determining the stresses and displace-

ments i_i this conical shells under unsymmetrical loads are presented. The

equations are in a form which is especially convenient for numerical inte-

gration on a digital computer. The usual assumptions of classical shell

theory are employed. Variations in thickness and mechanical properties

may exist along the generatory; however, thickness and mechanical proper-

ties are assumed not to vary in the circumferential direction. Also,

temperature gradients along the generator and through the thickness but

having no circumferential variation are included.

The final forms of the equations are presented as an eighth order

system of first order equations. They are presented in a form which makes

them particularly convenient for numerical integration, and the fact that

the equations do not involve derivatives of the thickness or of the wall

rigidities makes them particularly convenient for non-uniform shells.

Equations for normal and shearing forces, and bending and twisting

moments are also presented.

The author is at General Dynamics/Astronautics. No References.

6. Hayashi, T. and Hirano, Y.: Buckling of Orthotropic Cylinders Under

External Pressure. Transactions-Japan Society for Aeronautics and Space

Sciences, Vol. 6, No. 9, 1963, pp. 18-26.

This paper presents the solution for the buckling of orthotropic

circular cylindrical shells under external pressure. The formulas for

the buckling pressure are derived using the small deflection theory.

Some experimental studies were carried out using three circular cy-

lindrical shells made of fiber reinforced plastics. The test results were

compared with the theoretical results for the case of hydrostatic pres-

sure. The external pressure was applied by decreasing the pressure in-

side the cylinders by a vacuum pu_p.
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form. Materials used in making the cylindrical bulkheads were glass

cloths and polyester resin. The cylinders _ere bonded to the bulkheads

using polyester resin. Wire strain gages were attached to the outside
of the wall to measurethe circumferential strain distribution. The di-

mensions and elastic properties of the cylinders are given in tabular form

and the experimental setup is shownin a schematic diagram.

The measuredbuckling pressure is comparedwith the theoretical in

tabular form. Agreement is good. However, the authors suggest that more

tests on cylinders with higher orthotropy be performed to check the theory
more extensively.

The authors are membersof the Faculty of Engineering, University of Tokyo.
7 References.

7. Horton, W. H. and Durham, S. C. : Variation in Buckle Shapein Cylin-

drical Shells Under External Pressure and Axial Load. AIAA Journal, Vol.

2, No. 5, May 1964.

Literature on the behavior of cylindrical shells under the combined

action of internal or external pressure and axial compression is reviewed.

An examination of results of other investigations led to a corolla-

tion between the buckling angle and the pressure ratio, P/%r" The re-
sults are showngraphically. Geometric parameters for shells used by the

other investigators are collected in tabular form.

It is emphasizedthat the shells used to obtain corollation between

the buckling angle and P/%r had a large variation in (R/t) ratios and
in Modulus of Elasticity (somecylinders were madefrom steel and others
were madefrom aluminum). There was no significant variation in the L/D

ratio.

An elliptic curve is used to fit the data and the equation of the

curve is presented.

The author is at Stanford University. 7 References.

8. Hubka, R. E. : Approximate Influence Coefficients of Cantilevered

Stiffened Thin-Walled Conical Frustums Under End Load. Space Technology

Laboratories, Inc., BSD-TDR-63-1_,January 1963.
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The problem of determing approximate influence coefficients for a

cantilevered stiffened thin-walled conical frustum is considered. The

large end of the frustum is considered built into a rigid wall while the

small end is considered attached to a rigid movable plate. Assuming that

the stiffeners are close together, the cone is treated as a uniform orth-

otropic material. Influence coefficients associated with both the shear

and moment at the loaded (movable) end are derived using membrane theory.

Example values of influence coefficients are presented for both stiffened

and unstiffened cases. Results indicate that a negative coupling effect

is more pronounced for a stiffened than an unstiffened cone.

The author is at Space Technology Laboratories, Inc., Redondo Beach, Cal-

ifornia. 4 References.

9. Peterson, J. P., and Dow, M. Bo- Compression Tests on Circular Cy-

linders Stiffened Longitudinally by Closely Spaced Z-Section Stringers.

NASA MEMO 2-12-59L, March 1959.

Six circular cylinders stiffened longitudinally by closely spaced

Z-section stringers were loaded to failure in compression. Stiffeners

occur prior to general or overall buckling. The results obtained are

presented and compared graphically with_ available theoretical results for

the buckling of orthotropic cylinders. Buckling loads were predicted

with an error of 15 percent which was reduced to very nominal values af-

ter modification of the theories with e_irical correction factors de-

duced from supplementary panel tests and unstiffened cylinder tests.

The main series of tests were conducted on 7075-T6 aluminum allow

circular cylinders stiffened longitudinally by Z-section stringers and

loaded in compression. Auxiliary test specimens, used in determination

of the value for the fixity coefficient and the effectiveness factor,

consisted of a series of four longitudinally stiffened flat panels and

of three unstiffened circular cylinders. Dimensions of all specimens are

given in tabular form.

The authors are at Langley Research Center. 7 References.

iO. Pogorelov, A° V. : Fost-Buckling Behavior of Cylindrical Shells.
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NASA TT F-90, April 1964.

This report is a translation that is divided into two parts: axial

compression, and external pressure.

The problem of loss of stability of a cylindrical shell in axial com-

pression is presented with special attention devoted to the equilibrium

condition for a cy1_ir_rical shell s_ndthe 1_per critical load. Some ex-

perimental data are given.

A general investigation of the transcritical elastic state of a cy-

lindrical shell in compression follows. The shape of the compressed cy-

lindrical shell in the transcritical state of deformation is defined. The

energy of elastic deformation of the shell is determined and a section is

devoted to the determination of the state of equilibrium of a compressed

cylindrical shell under conditions of transcritical deformation.

The lower critical load for the basic case of a cylindrical shell in

compression is determined by first determining the parameters character-

izing the derformation of the shell as a whole, then setting up numerical

calculations to determine the lower critical load. Results of these nu_

merical calculations are given.

The last chapter dealing with axial compression is devoted to a qual-

itative investigation of the transition to transcritical deformation of a

cylindrical shell in compression. The shape of the shell surface under

conditions of transcritical deformation is discussed as well as the equi-

librium state of a shell under conditions of transcritical deformation.

The next chapter is devoted to the study of the loss of stability of

a cylindrical shell acted upon by external pressure. The state of elastic

equilibrium following loss of stability of primary form is discussed. The

upper critical load is determined and some experimental data are presented.

An investigation of the equilibrium of the buckled shell and the de-

termination of the lower critical load is made for the case of relatively

thick shells and for the case of relatively thin shells.

The post_buckling behavior of a cylindrical shell under the combined

action of an axial and a transverse load is examined by first discussing

the loss of stability of the shell and then examining the elastic energy

of the shell and the work done by the external load.

The author is at I zdatel'stvo Khar'lovskogo Universiteta. No References.
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ll. Schumacher, J. : Statistical Determination of Strength Properties.

Convair Astronautics Report AZS-27-274A, November 1958.

Methods of evaluating strength properties statistically are presented

for the cases when scatter of test results necessitates that design pro-

perties be defined in terms of probability levels. Selection of these

levels depends on the par+o_11_ a_ign., its ch__uces of failure, _ud the

consequences of failure.

Two strength levels now in use are "A" and "B" values defined as fol-

lows:

"A" value-that level which would be exceeded by at least 99% of the entire

population with 95% confidence.

"B" value-that level which would be exceeded by at least 90% of the entire

population with 95% confidence.

The various terms used in statistical analysis are defined. These

terms include normal distribution, mean value, standard deviation, sample

mean, sample variance, sample standard deviation, confidence level, con-

fidence interval, confidence limits, one- and two-sided tolerance limits.

Several example problems are given.

The first example is one in which six specimens were tested for ul-

timate tensile strength and the mean value of UTS and the standard devia-

tion are calculated.

±he second is an example in which a y_ confidence interval for the

mean value in the first example is computed.

The third is a continuation of the first example in which an "A"

value for the ultimate tension allowable is computed.

The last example is a continuation of the first example in which a

"B" allowable value is determined.

Included in the appendix is a table of one sided tolerance factors

for the normal distribution.

The author is at Convair Astronautics. 7 References.

12. Stachiw, J. D. : The Effects of Shell Joints and Bonding on the

Stability of Acrylic Resin Cellular Shells. Pennsylvania State Univer-

sity, Ordinance Research Laboratory, Report No. NOrd 16597-97, September

J-7_J •
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Six acrylic resin cellular shells were tested under external hydro-

static pressure in a small pressure tank to determine the effects of

joints between individual shell structure components and the effects of

bonding on cellular shell stability. When the shell stiffeners were re-

strained from moving laterally, the location of joints and the degree of

bonding did not affect the general elastic stability enough to cause fail-

ure by elastic buckling. The shells tested were 15.700" long with an I .D.

of 6.625" and O.D. of 8.715". They were constructed of concentric cylin-

ders separated by stiffeners. The following methods were used to fabri-

cate the acrylic resin circular shells:

Model 6--smooth tube slip-fitted over an externally ribbed tube.

Model 7--internally ribbed tube slip-fitted over a smooth tube.

Model 8--stacked H-ring modules.

Model 9--stacked U-ring modules.

Model 10--annular stiffeners, inserted between concentric tubes.

These annular stiffeners fitted loosely and were sepa-

rated by three spacers located 12Oo apart.

Model HE--stacked concentric rings and spacers.

All shells failed by material yielding except the one in which the

st_ _o_s ._ere not re_tr_ined from moving laterally. However, the dis-

tribution of stresses and strains on the other shell surfaces was con-

siderably influenced by the location of joints and the degree of bonding.

The shell stresses are calculated by Pulos' and Mihta's formulas. Com-

parison between experimental and theoretical stresses is presented graph-

ically. Curves are not plotted beyond I000 psi of external hydrostatic

pressure. SR-4 strain gages 1/4" long were mounted on the test speci-

mens to measure experimental strains.

Four epoxy resin models of the cellular shells were pressure-tested

and analyzed photoelastically to determine the effects of stress concen-

tration at the junctures of the stiffeners and the inner and outer shell

facings. It was determined that when the fillet radius at the juncture

of the stiffeners and facings is small, serious stress concentrations are

present at these points along the axis of the cellular shell.

The author is at Pennsylvania State University. 6 References.
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13. Stein, M.- The Influence of Frebuckling Deformations and Stresses on

The Buckling of Perfect Cylinders. NASA Technical Report TR R,190, Feb-

ruary 1964.

Large deflection theory is used to compute buckling loads of simply

supported perfect cylinders under combined axial compression and external

pressure considering prebuckl_ng _Afn_+o_ _ _+_o_ _aced by t_

edge support.

Donnell's large deflection theory and boundary conditions for simple

support are used. Prebuckling deformations are initially considered axi-

symmetric. The nonaxisy_netric displacements that occur at buckling are

added to the prebuckling axisymmetric displacements. Continuity is ex-.

pressed by the periodicity of the displacements resulting in a set of e-

quations for displacements that have complicated variable coefficients.

The equations are not solved directly rather an equivalent energy approach

is introduced using a variational approach.

Due to the fact that for large curvature parameters, Z = lOOO, the

solution led to large determinants, results are only presented for Z =

1OOO. Interaction curves are presented for Z = 50, lOO, 200, and 500.

Stress coefficients are presented graphically for external pressure alone,

hydrostatic pressure alone, and axial compression alone for a wide range

of Z within previously prescribed limits.

_._o_ published experimental results are plotted on the inter-

action curves. Quantitative agreement is good but the lack of qualitative

agreement is not explained.

The author is at Langley Research Center, NASA. 12 References.

14. Tennyson, R. C. : Buckling of Circular Cylindrical Shells in Axial

Compression. AIAA Journal, Vol. 2, No. 7, July 1964.

Photographs of a photoelastic study of the mechanism of buckling of

circular cylindrical shells under axial compression are presented. Photo-

graphs were made with a Fastax camera. The change in the isoclinic pat-

terns with the buckled waveform are shown. The five shells tested had

geometrical parameters in the ranges, lO0 R/t 170, and 2 L/R 6, and

were constructed of photoelastic plastic. Buckling loads were within
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10%of classically predicted values.

By using plane elasticity equations with the assumption that the
shear is zero along the 45° isoclinic, and equation for the isoclinics

is obtained. The family of isoclinics is shownin a graph for the clas-

sical buckling modeshape. The boundary of the isoclinic region is shown

and is in agreementwith the photographs.

It is shownthat buckling is initially localized; that buckling pro-

ceeds rapidly in the transverse direction; that initial buckling occurs
with n _ 10 and m _ 12 for the cylinders tested in agreementwith class-

ical theory; and that the final buckled state occurs with n' _ 5. This

behavior is explained analytically.

The author is at the University of Toronto, Toronto, Ontario, Canada.
5 References.
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